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RICHARD WILLIAMSON

Abstract. In [12], Zheng gave a geometric categorification of tensor products of simple
Uq(sl2)-modules. We extend his work to a 2-categorical setting, in line with the higher repre-
sentation theory programme of Rouquier.

1. Introduction

For any parabolic subgroup P ⊂ GLn(C), let DP (Gr(i)) denote the bounded derived cate-
gory of P -smooth constructible Ql-sheaves on Gr(i). Let V denote a tensor product of simple
representations of sl2. We show that there is an integer n ≥ 0 and a parabolic P ⊂ GLn(C)
such that

⊕n
i=0DP (Gr(i)), equipped with certain natural endofunctors E and F , is a triangu-

lated categorification of V . This is based on work of Zheng ([12]).
Realising E and E2 as Fourier-Mukai transforms, we explain how to define 2-morphisms

X ∈ End•(E) and T ∈ End•(E2) using Chern classes of canonical vector bundles. This
extends our construction to an sl2-categorification, in the sense of Chuang and Rouquier ([6]).

Keeping track of the Tate twist, we pass to a categorification of tensor products of simple
representations of Uq(sl2). Via Koszul duality, as in [12], we obtain an abelian categorification
of these representations.

Naturally, our results should generalise to the case of highest weight integrable representa-
tions of arbitrary quantum groups. Using a notion of micro-local perverse sheaves on quiver
varieties, Zheng has shown ([11]) how to generalise the weak categorification.

Let DbP×C∗(T ∗(Gr(i))-coh) denote the bounded derived category of (P × C∗)-equivariant
coherent sheaves on the cotangent bundle. Via Saito’s mixed Hodge modules,

⊕n
i=0DP (Gr(i))

can be replaced by
⊕n

i=0DbP×C∗(T ∗(Gr(i))-coh) in the constructions above. In this picture,
generalising to an arbitrary quantum group should be carried out by replacing T ∗(Gr(i)) by
other quiver varieties.

The definition of X and T , and the proof that they satisfy the Hecke relations, was explained
to me by Raphaël Rouquier. I thank him very much for his generosity, and for the many things
I have learnt from him.
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2. Triangulated sl2-categorification of tensor products

2.1. Abelian sl2-categorification. Let Hn(q), for q 6= 0, 1, denote the affine Hecke algebra

of type Ãn−1 over a field k. Let Hn(0) (resp. Hn(1)) denote the nil (resp. degenerate) affine

Hecke algebra of type Ãn−1. In particular, Hn(1) is not the specialisation of the affine Hecke
algebra to q = 1.

We shall mainly need Hn(0), which has generators T1, . . . , Tn−1, X1, . . . , Xn, subject to the
following relations:

T 2
i = 0

TiTi+1Ti = Ti+1TiTi+1

TiTj = TjTi if |i− j| > 1

XiXj = XjXi

TiXj = XjTi if |i− j| > 1

TiXi = Xi+1Ti − 1

TiXi+1 = XiTi + 1.

In [6], Chuang and Rouquier introduced the notion of an abelian sl2-categorification.

Definition 2.1. A weak abelian sl2-categorification is the data of

• a k-linear abelian category A, with finite dimensional complexified Grothendieck group
K = C⊗K0(A)
• an adjoint pair of exact endofunctors (E,F )

such that

• E and F induce an action of sl2 on K
• F is isomorphic to a left adjoint of E.

Example 2.2. Let Gr(i) denote the Grassmannian variety of i-dimensional subspaces of Cn, and
let Gr(i, i + 1) denote the partial flag variety {V,W ⊂ Cn | V ⊂ W, dim(V ) = i, dim(W ) =
i+ 1}. We have the following diagram, where p and q are the canonical projections.

Gr(i, i+ 1)
p

xx

q

''
Gr(i) Gr(i+ 1)

The (singular) cohomology algebra H•(Gr(i)) has a unique simple module up to isomor-
phism, induced by the projection

H•(Gr(i)) // // H0(Gr(i))
' // C .

The morphism q induces an inclusion of algebras H•(Gr(i + 1)) ↪→ H•(Gr(i, i + 1)). The
morphism p induces an inclusion of algebras H•(Gr(i)) ↪→ H•(Gr(i, i+ 1)).
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Regarding H•(Gr(i, i+ 1)) as an H•(Gr(i+ 1))-H•(Gr(i))-bimodule, define

Ei : H
•(Gr(i))-mod→ H•(Gr(i+ 1))-mod

by H•(Gr(i, i + 1)) ⊗H•(Gr(i)) −. Regarding H•(Gr(i, i + 1)) as an H•(Gr(i))-H•(Gr(i + 1))-
bimodule, define

Fi : H
•(Gr(i+ 1))-mod→ H•(Gr(i))-mod

by H•(Gr(i, i + 1)) ⊗H•(Gr(i+1)) −. Then E =
⊕n

i=0Ei and F =
⊕n

i=0 Fi define endofunctors
of A(n) =

⊕n
i=0 H

•(Gr(i))-mod.
It is classical (see 3.4 in [7], for example) that, as an H•(Gr(i))-module,

H•(Gr(i, i+ 1)) ∼=
n−i−1⊕
j=0

H•(Gr(i)).

As an H•(Gr(i))-module,

H•(Gr(i− 1, i)) ∼=
i−1⊕
j=0

H•(Gr(i)).

It follows that
EF (H•(Gr(i))) = i(n− i+ 1)H•(Gr(i))

and that
FE(H•(Gr(i)) = (n− i)(i+ 1)H•(Gr(i)).

Let e and f denote the endomorphisms of K0(A(n)) induced by E and F . Then

(ef − fe)([H•(Gr(i))]) = (2i− n) [H•(Gr(i))] .

Since C⊗K0(A(n)) =
⊕n

i=0 C [H•(Gr(i))], we have shown that ef − fe acts on K0(A(n)λ)
by λ, where A(n)λ = H•(Gr(λ+n

2
))-mod.

The endofunctors (E,F ) are an adjoint pair, with F isomorphic to a left adjoint of E. We
will see this later. Alternatively, one can prove it algebraically, as in Proposition 3.5 of [7].

Thus we have a weak sl2-categorification of the simple representation of sl2 of dimension n.
In this example, we merged the arguments of 5.3 in [6] and 6.2 in [7]. In the latter paper, the
weak sl2-categorification is modified to a weak categorification of the simple representation of
Uq(sl2) of dimension n, using graded versions of the functors and categories above. We will
pass to Uq(sl2) slightly differently later.

Definition 2.3. An abelian sl2-categorification is the data of

• a weak sl2-categorification A
• natural transformations X ∈ End(E), T ∈ End2(E)

such that

• X − a is locally nilpotent for some a ∈ k
• Ti → 1En−i−1T1Ei−1 and Xi → 1En−iX1Ei define a morphism Hn(q)→ End(En) for all
n and a fixed q.

Remark 2.4. The last property is key, allowing abelian sl2-categorifications to be controlled.

Example 2.5. Via Koszul duality and a special case of our main result, we will see (3.2) that
the weak categorification 2.2 can be extended to an sl2-categorification.

Subquotients of the affine Hecke algebra can be used to give an algebraic abelian sl2-
categorification of the simple representation of sl2 of dimension n (see 5.3 in [6]). These
‘minimal’ categorifications play a central role in the theory of abelian higher representations
of sl2 (see 5.24 in [6]) .
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Remark 2.6. The paper [6] of Chuang and Rouquier illustrates that abelian sl2-categorifications
yield derived equivalences of importance in representation theory. There are other motivations
for higher representation theory beyond classical representation theory, as we remark briefly
in 2.12.

2.2. Triangulated sl2-categorification. We now define triangulated sl2-categorifications,
after Rouquier.

Definition 2.7. Let V denote a finite dimensional representation of sl2. A weak triangulated
sl2-categorification of V is the data of

• a triangulated category A
• an adjoint pair (E,F ) of triangulated endofunctors of A

such that

• F is isomorphic to a left adjoint of E
• V = C⊗K0(A).

Definition 2.8. A triangulated sl2-categorification of V is the data of

• a weak triangulated sl2-categorification A
• natural transformations X ∈ End•(E) and T ∈ End•(E2)

such that

• the following diagram in End•(E3) commutes

EEE
1ET

zz

T1E

$$
EEE

T1E
��

EEE

1ET
��

EEE

1ET $$

EEE

T1Ezz
EEE

• T 2 = 0
• T (X1E)− (1EX)T = 1 = (X1E)T − T (1EX)
• X is nilpotent.

Remark 2.9. This is the case q = 0, so that we obtain a morphism Hn(0) → End•(En). We
shall not need the other two cases.

Remark 2.10. One should also ensure that T admits a weight decomposition compatible with
E and F . We explain what holds for abelian categorifications.

Suppose that A equipped with endofunctors E and F is an abelian sl2-categorification of a
representation V of sl2. If Vλ is a weight space of V , let Aλ denote the full subcategory of A
of objects whose class belongs to Vλ in C⊗K0(A). It is proved in 5.5 of [6] that A =

⊕
λAλ,

so that the class of an indecomposable object of A is a weight vector.
Furthermore, E and F are compatible with the weight decomposition of A. Indeed, it is

proved in 5.27 of [6] that if λ ≥ 0, then

EF IdA−λ
⊕

Id⊕λAλ
∼= FEIdA−λ

and
EF IdAλ

∼= FEIdAλ
⊕

Id⊕λAλ .
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In the triangulated case, one (probably) cannot deduce these facts from the axioms, so a
stronger condition is needed. We avoid the question of what such a condition should be.

Example 2.11. Let A be an abelian sl2-categorification of V , with endofunctors E and F
and natural transformations X and T . The functors E and F pass to endofunctors E• and
F • on the derived category D(A) of A. Similarly, X and T pass to natural transformations
X• ∈ End•(E•) and T • ∈ End•((E2)•), giving D(A) the structure of a triangulated sl2-
categorification of V .

Remark 2.12. Following a suggestion of Crane and Frenkel, Rouquier has conjectured that,
after passing from triangulated categories to dg-categories, higher representations (of which
sl2-categorifications are a special case) should give rise to a 4-dimensional TQFT. The decat-
egorification of the TQFT should recover the 3-dimensional TQFT of Reshetikhin-Turaev.

Rouquier has also suggested that higher representation theory should allow moduli space
constructions to be bypassed. This would give an algebraic approach to Donaldson-Thomas
and Gromov-Witten invariants.

2.3. Weak categorification. Let G = GLn(C), and fix a Borel subgroup B ⊂ G. Fix a
prime number l, and let Ql denote the algebraic closure of the field of l-adic numbers. Given a
complex algebraic variety X (with its étale topology) equipped with an action of B, let D(X)
denote the bounded derived category of B-smooth constructible Ql-sheaves on X. Thus D(X)
is the full subcategory of the bounded derived category of constructible Ql-sheaves (see 2.2.18
in [3]) consisting of complexes whose cohomology sheaves are locally constant on B-orbits.

Let X
f // Y be a morphism of B-schemes of finite type over C. The usual induced

functors between the bounded derived categories of constructible Ql-sheaves on X and Y
restrict to functors f∗, f! : D(X)→ D(Y ), and f ∗, f ! : D(Y )→ D(X).

Fix a positive integer n. Let Gr(i) and Gr(i, i + 1) be as in §2.2. We have the following
diagram, where p and q are the canonical projections.

Gr(i, i+ 1)
p

xx

q

''
Gr(i) Gr(i+ 1)

We shall use the fact that p and q are proper, so that p∗ = p! and q∗ = q!, without further
mention. Let Ei = q!p

∗ : D(Gr(i)) → D(Gr(i + 1)) and Fi = p!q
∗ : D(Gr(i + 1)) → D(Gr(i)).

Let T =
⊕n

i=0D(Gr(i)), and define E =
⊕n

i=0Ei : T → T , F =
⊕n

i=0 Fi : T → T .
The proof of the following proposition is borrowed from 3.3.4 in [12]. We denote the constant

Ql-sheaf on X, regarded as an object of D(X) concentrated in degree zero, by Ql or (Ql)X .

Proposition 2.13. There is an isomorphism of functors

FiEi ⊕
⊕

n−i≤j<i

Id[−2j](−j) ∼= EiFi ⊕
⊕

i≤j<n−i

Id[−2j](−j),

where [−] denotes the shift functor of T , and (−) denotes the Tate twist.

Proof. Let

X = {V1, V2 ∈ Gr(i) | dim(V1 + V2) ≤ i+ 1}
and

Y = {V1, V2, V3 | V1, V2 ∈ Gr(i), V3 ∈ Gr(i+ 1), V1 ⊂ V3, V2 ⊂ V3}.
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We have the following commutative diagram.

X
v //

u

��

Gr(i)

Y

r

ff

t //

s

��

Gr(i, i+ 1)

p

OO

q

��
Gr(i) Gr(i, i+ 1)p

oo
q
// Gr(i+ 1)

Here p and q are as above, and

s(V1, V2, V3) = (V1, V3)

t(V1, V2, V3) = (V2, V3)

r(V1, V2, V3) = (V1, V2)

u(V1, V2) = V1

v(V1, V2) = V2.

Note that Y is the fibred product Gr(i, i + 1) ×Gr(i+1) Gr(i, i + 1). Hence, by proper base
change, (see XII, 5.1 in [1]) q∗q! ' t!s

∗. Thus FiEi = p!q
∗q!p

∗ ' p!t!s
∗p∗ = v!r!r

∗u∗.
By sheafified Poincaré duality (see XVIII 3.2.5 in [1], and II 7.5 in [9]), r!r

∗(−) ' r!Ql ⊗−.
Hence FiEi ' v!(r!Ql ⊗ u∗(−)).

Let i : ∆ ↪→ X denote the inclusion of the diagonal ∆ in X. Note that

IdGr(i) ' (vi)!(ui)
∗ ' v!i!i

∗u∗.

We deduce from sheafified Poincaré duality that

IdGr(i)(−) ' v!(i!Ql ⊗ u∗(−)).

Since r is an isomorphism above X \∆, we have the following commutative diagram.

X \∆
id //

r−1 ∼
��

X \∆
� _

��

r−1(X \∆)
� _

��
Y

r // X

By proper base change, the restriction (r!Ql)|X\∆ is isomorphic to (Ql)X\∆.
Over ∆, r is a Pn−i−1-bundle. Applying proper base change to the diagram

r−1(∆)
� _

��

r // ∆� _

��
Y

r // X

we see that the restriction (r!Ql)|∆ is isomorphic to r!((Ql)r−1(∆)). Hence (see Lemma 5.4.12
of [3]),

(r!Ql)|∆ '
n−i−1⊕
j=0

(Ql)∆[−2j](−j).
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Let
Y ′ = {V1, V2, V3 | V1 ∈ Gr(i− 1), V2, V3 ∈ Gr(i), V1 ⊂ V2, V1 ⊂ V3}.

Note also that
X = {V1, V2 ∈ Gr(i) | dim(V ∩ V ′) ≥ i− 1}.

We have the following canonical commutative diagram.

X
v //

u

��

Gr(i)

Y ′
r′

ff

t //

s

��

Gr(i− 1, i)

q

OO

p

��
Gr(i) Gr(i− 1, i)q

oo
p
// Gr(i− 1)

Here u and v are as in the commutative diagram at the start of the proof, p and q are the
canonical projections, and

s(V1, V2, V3) = (V1, V2)

t(V1, V2, V3) = (V1, V3)

r′(V1, V2, V3) = (V2, V3).

As above, we find that

EiFi(−) ' v!(r
′
!Ql ⊗ u∗(−))

(r′!Ql)|X\∆ ' (Ql)X\∆

(r′!Ql)|∆ '
i−1⊕
j=0

(Ql)∆[−2j](−j).

We have shown that

(r!Ql)|∆ ⊕
⊕

n−i≤j<i

(Ql)|∆ [−2j](−j) ' (r′!Ql)|∆ ⊕
⊕

i≤j<n−i

(Ql)|∆ [−2j](−j).

This isomorphism, the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber
(6.2.5 in [3]), and the fact that

(r!Ql)|X\∆ ' (r′!Ql)|X\∆ ' (Ql)X\∆,

imply that

r!Ql ⊕
⊕

n−i≤j<i

i!Ql[−2j](−j) ' r′!Ql ⊕
⊕

i≤j<n−i

i!Ql[−2j](−j).

The result follows by comparing this isomorphism with the realisations of EiFi, FiEi, and
IdGr(i) above. �

Corollary 2.14. The functors E and F induce an action of sl2 on C⊗K0(A).

The functors E and F are adjoint to one another in the following sense.

Proposition 2.15. Up to a shift and a twist, (E,F ) and (F,E) are adjoint pairs of functors.

Proof. Note that p : Gr(i, i+1)→ Gr(i) is a Pn−i−1-fibre bundle, and q : Gr(i, i+1)→ Gr(i+1)
is a Pi-fibre bundle. Hence p! ' p∗[2(n− i− 1)](n− i− 1) and q! ' q∗[2i](i) (see, for example,
II.8.1 in [9]). The result follows from the adjointness of (p∗, p∗), (p!, p

!), (q∗, q∗), and (q!, q
!). �
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Using the weight space decomposition of C⊗K0(T ), we now determine the action of sl2 on
C⊗K0(T ) induced by E and F . A different approach was taken in [12].

Let P(Gr(i)) denote the category ofB-smooth perverse sheaves on Gr(i), and letDb(P(Gr(i)))
denote the bounded derived category of P(Gr(i)) with its standard t-structure. There exists
(see [2]) a canonical t-exact triangulated functor Db(P(Gr(i)))→ D(Gr(i)), which is the iden-
tity on P(Gr(i)). The existence follows from the existence of a filtered counterpart to D(Gr(i)),
via the formalism of filtered triangulated categories.

Proposition 2.16. The canonical functor Db(P(Gr(i))) → D(Gr(i)) is an equivalence of
categories.

Proof. This is 1.3 in [2]. �

Proposition 2.17. The category Db(P(Gr(i))) is generated as a triangulated category by the
projective objects in P(Gr(i)).

Proof. Indeed, P(Gr(i)) has enough projectives (3.3.1 in [4]), and has finite global dimension
(3.2.2 in [4]). �

Corollary 2.18. As a C-vector space, C⊗K0(T ) has dimension 2n+1.

Proof. Let T ′ =
⊕n

i=0Db(P(Gr(i))). By 2.16, C⊗K0(T ) ' C⊗K0(T ′). It follows from 2.17
that a basis of C⊗K0(T ′) is given by the classes of indecomposable projective perverse sheaves
in T ′.

Indecomposable projective perverse sheaves in T ′ are in bijection with simple perverse
sheaves in T ′, which are in bijection with orbits of B on

⊕n
i=0 Gr(i). It is classical that

there are
(
n
i

)
orbits of B on Gr(i), and the result follows. �

Proposition 2.19. Let L denote the standard representation of sl2. As a representation of
sl2, C⊗K0(T ) ' L⊗n.

Proof. By 2.18, C⊗K0(T ) has the correct dimension. Let h = ef − fe, where e and f are the
endomorphisms of C⊗K0(T ) induced by E and F . By 2.13, and the fact that C⊗K0(Gr(i))
has dimension

(
n
i

)
, the eigenvalues of h on C⊗K0(T ) are correct. �

We have proved the following result.

Corollary 2.20. The endofunctors E and F give T the structure of a weak sl2-categorification
of L⊗n.

Given a parabolic subgroup P of GLn(C) for some n, let DP (Gr(i)) denote the category of P -
smooth constructible Ql-sheaves. Let V be a tensor product of arbitrary simple representations
of sl2.

Proposition 2.21. There is an integer n ≥ 0, a parabolic subgroup P ⊂ GLn(C), and a
pair of endofunctors (EP , FP ) of TP =

⊕n
i=0DP (Gr(i)) giving TP the structure of a weak

sl2-categorification of V .

Proof. Exactly as in the case V = L⊗n, P = B ⊂ GLn(C) above. The results 2.18 and 2.19
must be modified, but we omit this. Given V , the interested reader will have no difficulty
finding the corresponding parabolic and checking the details. �

2.4. 2-morphisms X and T . We now explain how to extend the weak sl2-categorification T
of L⊗n to a Chuang-Rouquier sl2-categorification. In order to define X ∈ End•(E), we realise
Ei as a Fourier-Mukai transform for every i.
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The following diagram commutes, where p, q, p′ and q′ are the canonical projections, and j
is the canonical map (V1 ⊂ V2)→ (V1, V2).

Gr(i, i+ 1)

j

��

p

ww

q

((
Gr(i) Gr(i)×Gr(i+ 1)

p′
oo

q′
// Gr(i+ 1)

Proposition 2.22. There is an isomorphism of functors Ei ' q′∗(j∗Ql ⊗ p′∗(−)).

Proof. Straightforward. �

Let L denote the tautological line bundle on Gr(i, i+1). The fibre above the point Vi ⊂ Vi+1

is Vi+1/Vi. The first Chern class c1(L ) ∈ H2(Gr(i, i + 1),Ql(1)) of L can be viewed as a
morphism, belonging to HomD(Gr(i,i+1))(Ql,Ql[2](1)). By functoriality, c1(L ) determines a

morphism in HomD(Gr(i)×Gr(i+1))(j∗Ql, j∗Ql[2](1)) and hence, by the proposition, determines an
endomorphism of Ei. Assembling these endomorphisms, we obtain an endomorphism X of E.

In order to define T ∈ End•(E2), we realise Ei+1Ei as a Fourier-Mukai transform for every i.
We have the following commutative diagram, where p, q, p′ and q′ are the canonical projections,
and j is the canonical map (V1 ⊂ V2 ⊂ V3)→ (V1, V3).

Gr(i, i+ 1, i+ 2)

j

��

p

ww

q

((
Gr(i) Gr(i)×Gr(i+ 2)

p′
oo

q′
// Gr(i+ 2)

Proposition 2.23. There is an isomorphism of functors Ei+1Ei ' q′∗(j∗Ql ⊗ p′∗(−)).

Proof. We have the following commutative diagram, where the µi, ψi and ji are the canonical
maps, and j is the same as in the diagram above.

Gr(i, i+ 1, i+ 2)

j

��

µ1

tt

µ2

**
Gr(i, i+ 1)×Gr(i+ 2)

φ1ww

ψ1

**

Gr(i)×Gr(i+ 2) Gr(i)×Gr(i+ 1, i+ 2)
ψ2

tt φ2 ((
Gr(i, i+ 1)

j1

''

Gr(i)×Gr(i+ 1)×Gr(i+ 2)

ϕ1tt

ϕ2

OO

ϕ3 **

Gr(i+ 1, i+ 2)
j2

vv
Gr(i)×Gr(i+ 1) Gr(i+ 1)×Gr(i+ 2)

It follows from 2.22 (see 12.2.2 in [10]) that there is an isomorphism of functors Ei+1Ei '
q′∗(K ⊗ p′∗(−)), where K = ϕ2∗(ϕ1

∗j1∗Ql ⊗ ϕ3
∗j2∗Ql). By proper base change with respect to

the diamonds on the lower left and lower right of the diagram, K ' ϕ2∗(ψ1∗Ql ⊗ ψ2∗Ql).
Thus K ' ϕ2∗ψ1∗(ψ1

∗ψ2∗Ql). By proper base change with respect to the upper diamond (ig-
noring the morphisms inside), K ' ϕ2∗ψ1∗(µ1∗Ql). The result follows from the commutativity
of the upper diamond. �

Remark 2.24. A different characterisation of Ei+1Ei is given in 3.3.3 of [12]. We will see it
later.
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The map j factors through the canonical map π : Gr(i, i + 1, i + 2) → Gr(i, i + 2) given by
(V1 ⊂ V2 ⊂ V3) → (V1 ⊂ V3). Let Rkπ∗ denote the kth higher direct image of π, and regard
R2π∗(Ql) as a complex concentrated in degree zero. Since Rkπ∗ vanishes for k > 2, there is a
canonical morphism π∗(Ql[2])→ R2π∗(Ql) in D(Gr(i, i+ 2)).

Let η : R2π∗(Ql(1))→ Ql denote the trace morphism, which is an isomorphism of Ql-sheaves
(see XVIII 2.9 in [1]). By composition, we obtain a canonical morphism t′ : π!(Ql[2](1)) →
R2π!(Ql)→ Ql.

Moreover, t′ extends to a natural transformation π!π
!(K)→ K for any K ∈ D(Gr(i, i+ 2)),

via the following commutative diagram (cf. II.8 in [9]).

π!π
!K

∼
��

// K

π!(Ql[2](1)⊗ π∗(K)) ∼
// π!(Ql[2](1))⊗K

t′⊗idK

OO

Composing with the adjunction morphism K → π∗π
∗(K), we get a natural transformation

T ′ : π!π
!(K)→ π∗π

∗(K). Let t denote the morphism obtained by taking K = Ql[−2](−1). By
2.23, t induces an endomorphism of Ei+1Ei for every i. Assembling these endomorphisms, we
obtain an endomorphism T of E2.

Remark 2.25. The definitions of X and T were outlined to the author by Rouquier.

Let E denote the canonical rank two vector bundle on Gr(i, i + 2) whose fibre above
(Vi ⊂ Vi+2) is Vi+2/Vi. The P1-bundle π is the projectivisation of E , and thus gives rise
to a tautological line bundle Oπ(−1) on Gr(i, i + 1, i + 2). Indeed, Oπ(−1) is a subbundle
of the pull-back bundle π∗E , whose fibre above (Vi ⊂ Vi+1 ⊂ Vi+2) is Vi+1/Vi. The quotient
bundle π∗E /Oπ(−1) is the line bundle on Gr(i, i+ 1, i+ 2) corresponding to the twisting sheaf
Oπ(1). The fibre of π∗E /Oπ(−1) above (Vi ⊂ Vi+1 ⊂ Vi+2) is Vi+2/Vi+1.

By 2.23, the first Chern classes c1(Oπ(−1)) and c1(π∗E /Oπ(−1)) induce endomorphisms of
E2, which we denote by x and y respectively.

Proposition 2.26. In End•(E2), we have 1EX = x and X1E = y.

Proof. The second relation can be seen by inspecting the proof of 2.23. Indeed, X1E is de-
termined by the morphism ϕ2∗(ϕ1

∗j1∗Ql ⊗ ϕ3
∗j2∗c1(L )), where L is the tautological line

bundle on Gr(i+ 1, i+ 2). By proper base change, this morphism identifies with ϕ2∗(ψ1∗Ql ⊗
ψ2∗c1(φ∗2L )), and hence with ϕ2∗ψ1∗(ψ1

∗ψ2∗c1(φ∗2L )). By proper base change once more, this
morphism identifies with j∗c1(µ∗2φ

∗
2L ). The pull-back bundle (φ2µ2)∗L is exactly π∗E /Oπ(−1),

as required.
The endofunctor 1EX is determined by the morphism ϕ2∗(ϕ1

∗j1∗c1(L )⊗ ϕ3
∗j2∗Ql), where

L is the tautological line bundle on Gr(i, i + 1). As above, this morphism identifies with
ϕ2∗(ψ1∗c1(φ∗1L ) ⊗ ψ2∗Ql), and hence with ϕ2∗ψ2∗(ψ2

∗ψ1∗c1(φ∗1L )). By proper base change,
this morphism identifies with j∗c1(µ∗1φ

∗
1L ). The pull-back bundle (φ1µ1)∗L is exactly Oπ(−1),

as required. �

We now show that T , x and y satisfy the defining relations 2.1 of the affine nilHecke algebra
H2(0). The proof was outlined to the author by Rouquier.

Proposition 2.27. In End•(E2), we have

T 2 = 0, yT − Tx = 1, T (x+ y) = (x+ y)T.
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Proof. By the naturality of T ′, the composition

π∗π
∗Ql

∼ // π∗Ql
t // π∗Ql[−2](−1)

∼ // π∗π
∗Ql[−2](−1)

fits into the following commutative diagram, for any α ∈ End2
D(Gr(i,i+2))(Ql).

π∗π
∗Ql

π∗π∗α
��

∼ // π∗Ql
t // π∗Ql[−2](−1)

∼ // π∗π
∗Ql[−2](−1)

π∗π∗α[−2]

��

π∗π
∗Ql[2]

∼ // π∗Ql[2]
t[2]

// π∗Ql(−1)
∼ // π∗π

∗Ql(−1)

We deduce that T commutes with x+ y, since

c1(Oπ(−1)) + c1(π∗E /Oπ(−1)) = π∗c1(E ).

Furthermore, t[−2](−1) ◦ t factors through a morphism Ql[−2](−1)→ Ql[−4](−2). This is
the zero morphism, since shifting Ql by the dimension of Gr(i, i+ 2) is a simple perverse sheaf
on Gr(i, i+ 2). Thus T 2 = 0.

Let α = π∗c1(Oπ(−1)) and β = π∗c1(Oπ(1)). We claim that the following composition is
the identity in End•D(Gr(i,i+2))(Ql).

Ql
adj // π∗Ql

β // π∗Ql[2](1)
t // Ql

Given a point z ∈ Gr(i, i+ 2), let π′ : π−1(z) ' P1 → {z} denote the fibre map. Taking the
fibre of the above composition at z, and applying proper base change, we obtain a morphism
of the following form.

Ql
adj // π′∗Ql

c1(OP1 (1))
// π′∗Ql[2](1) // Ql

Via the natural isomorphism between π′ and the global sections functor Γ(P1,−), the above
morphism identifies with the following morphism, where τ denotes the trace morphism on
cohomology.

Ql

c1(OP1 (1))
// H2(P1,Ql)

τ // Ql

This is the identity, since the trace of the class of c1(OP1) in H2(P1,Ql) is 1 (see Cycle, 2.1.5
in [5]).

The following composition is also the identity morphism, since −c1(Oπ(−1)) = c1(Oπ(1)).

Ql
adj // π∗Ql

−α // π∗Ql[2](1)
t // Ql

The composition Ql
adj // π∗Ql

t // Ql[−2](−1) is zero, since it factors through a mor-

phism Ql → Ql[−2](−1).
It follows that the following composition is equal to the adjunction morphism Ql → π∗Ql.

Ql
adj // π∗Ql

βt−t[2](1)α
// π∗Ql

The following diagram commutes, since c2(π∗E ) = c1(Oπ(−1))c1(Oπ(1)).

Ql[4](2)
adj

&&

Ql

c2(E )
<<

adj // π∗Ql
αβ // π∗Ql[4](2)

t[2](1)
// Ql[2](1)
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In particular, the row in the above diagram factors through a morphism Ql[4](2)→ Ql[2](1).
It is therefore zero, and the composition

Ql
adj // π∗Ql

β // π∗Ql[2](1)
βt−t[2](1)α

// π∗Ql[2](1)

is equal to the composition

Ql
adj // π∗Ql

β // π∗Ql[2](1) .

This proves that yT − Tx = 1. �

Corollary 2.28. In End•(E2), we have Ty − xT = 1 .

Proposition 2.29. In End•(E3), the following diagram commutes.

EEE
1ET

zz

T1E

$$
EEE

T1E
��

EEE

1ET
��

EEE

1ET $$

EEE

T1Ezz
EEE

Proof. Follows from the compatibility of the trace morphism with base change and composition.
We omit the details. �

Combining 2.20, 2.27, 2.28, and 2.29, we have the following result.

Proposition 2.30. The endofunctors E and F , and the endomorphisms X and T , give T the
structure of an sl2-categorification of L⊗n.

Let V be a tensor product of arbitrary simple representations of sl2.

Proposition 2.31. There is an integer n ≥ 0, a parabolic subgroup P ⊂ GLn(C), a pair of end-
ofunctors (EP , FP ) of TP =

⊕n
i=0DP (Gr(i)), and a pair of endomorphisms XP ∈ End•(EP ),

TP ∈ End•(E2
P ) giving TP the structure of an sl2-categorification of V .

Proof. The integer n ≥ 0, the parabolic subgroup P ⊂ GLn(C), and the endofunctors (EP , FP )
are given by 2.21. The 2-morphisms XP and TP are obtained exactly as in the case V = L⊗n

and P = B ⊂ GLn(C) above. �

2.5. Action of Z[q, q−1]. We explain how to pass to an sl2-categorification of the quantum
group Uq(sl2), where q ∈ C is neither zero nor a root of unity. A slightly different approach
via shifting E and F is taken in [7] and [12].

Fix a parabolic subgroup P ⊂ GLn(C), and let TP (q) =
⊕n

i=0DP (Gr(i)). Choosing an

isomorphism τ : Ql → C, fix an element q1/2 ∈ Ql. This allows us to define a half-integral Tate
twist (−)(n

2
) on DP (Gr(i)). For even n, this is the usual Tate twist.

We have the following diagram, where p and r are the canonical projections.

Gr(i, i+ 1)
p

xx

r

''
Gr(i) Gr(i+ 1)
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Let Ei = r!p
∗(n−i−1

2
) : DP (Gr(i))→ DP (Gr(i+ 1)), Fi = p!r

∗( i
2
) : DP (Gr(i+ 1))→ DP (Gr(i)),

and Gi = (2i−n
2

) : DP (Gr(i)) → DP (Gr(i)). Define E,F,G : TP (q) → TP (q) by E =
⊕n

i=0Ei,
F =

⊕n
i=0 Fi, and G =

⊕n
i=0 Gi.

There is an action of Z[q, q−1] on K0(TP (q)) given by q · [K] =
[
K(−1

2
)
]
. We prove that E,

F , and G induce an action of Uq(sl2) on Q(q)⊗Z[q,q−1] K0(TP (q)).

Proposition 2.32. We have [GG−1] = [G−1G] = 1, [GEG−1] = q−2 [E] , [GFG−1] = q2 [F ],

and [EF ]− [FE] = [G]−[G−1]
q−q−1 .

Proof. The last relation follows from 2.13, which implies the following isomorphism of functors.

FiEi ⊕
⊕

n−i≤j<i

Id[−2j](−j)(n−1
2

) ' EiFi ⊕
⊕

i≤j<n−i

Id[−2j](−j)(n−1
2

).

The other relations are easily checked. �

Let V denote a tensor product of simple representations of Uq(sl2).

Proposition 2.33. There is an integer n ≥ 0 and a parabolic subgroup P ⊂ GLn(C), together
with endofunctors E,F and G of TP (q), such that the induced action of Uq(sl2) on Q(q)⊗Z[q,q−1]

K0(TP (q)) is isomorphic to the action of Uq(sl2) on V .

Proof. After 2.32, this is a question of combinatorics (cf. 2.16 - 2.21). The Clebsch-Gordon
decomposition of V into a direct sum of simple representations (see 1.4.4 in [8]) gives a means
to calculate the dimensions of the weight spaces of V . �

Remark 2.34. The proposition can be proved geometrically. This is the approach taken in [12].

Exactly as in §2.4, there are 2-morphisms X ∈ End(E) and T ∈ End(E2) satisfying the
relations 2.27 and 2.29, giving rise to a morphism Hn(0)→ End(En) for every n. Furthermore,
(G,G−1), (G−1, G), (E,GF ), and (F,G−1E) are adjoint pairs of functors, up to a shift (see
2.15).

Remark 2.35. We have, in essence, constructed a Uq(sl2)-categorification of V , in the sense of
the higher representation theory programme of Chuang and Rouquier. However, we refrain
from using this terminology. Properly justifying it would take us too far afield.

Fix a parabolic subgroup P ⊂ GLn(C). We show that the divided powers (see 1.2 in [8])
of [E] and [F ] are induced by endofunctors of TP (q). We have the following diagram, where p
and r are the canonical projections.

Gr(i, i+ s)
p

xx

r

''
Gr(i) Gr(i+ s)

Let E
(s)
i = r!p

∗( s(n−i−s)
2

) : Gr(i) → Gr(i + s), and F
(s)
i = p!r

∗( is
2

) : Gr(i + s) → Gr(i). Define

E(s), F (s) : TP (q) → TP (q) by E(s) =
⊕n

i=0 E
(s)
i , F (s) =

⊕n
i=0 F

(s)
i . The proof of the following

proposition is borrowed from 3.3.3 in [12].

Proposition 2.36. We have isomorphisms of functors E(s−1)E '
⊕s−1

j=0 E
(s)( s−1−2j

2
) and

F (s−1)F '
⊕s−1

j=0 F
(s)( s−1−2j

2
).
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Proof. Let

Y = {V1 ⊂ V2 ⊂ V3 | V1 ∈ Gr(i), V2 ∈ Gr(i+ 1), V3 ∈ Gr(i+ s), V1 ⊂ V3, V2 ⊂ V3}.
We have the following commutative diagram. The maps are the canonical projections.

Gr(i, i+ s)
x //

w

��

Gr(i+ s)

Y
t

gg

v //

u

��

Gr(i+ 1, i+ s)

r′

OO

p′

��
Gr(i) Gr(i, i+ 1)p

oo
r

// Gr(i+ 1)

We have that E
(s−1)
i+1 Ei = r′!p

′∗r!p
∗( s(n+1−i−s)−1

2
). By proper base change, r′!p

′∗r!p
∗ ' r′!v!u

∗p∗,

and hence E
(s−1)
i+1 Ei ' x!t!t

∗w∗( s(n+1−i−s)−1
2

). Since t is a Ps−1-bundle, t!Ql '
⊕s−1

j=0 Ql[−2j](−j).
Thus t!t

∗ ' t!Ql ⊗− '
⊕s−1

j=0[−2j](−j), and

E
(s−1)
i+1 Ei '

s−1⊕
j=0

x!w
∗[−2j](−j)( s(n+1−i−s)−1

2
) '

s−1⊕
j=0

E
(s)
i ( s−1−2j

2
).

The second isomorphism is proved similarly. �

Corollary 2.37. We have [E(s)] = [Es]
[s]q !

and [F (s)] = [F s]
[s]q !

.

3. Koszul duality

3.1. Koszul duality. Given a tensor product V of simple representations of Uq(sl2), let T =
TP (q) denote the corresponding triangulated categorification of 2.33. In the spirit of Soergel,
we outline how to pass to an abelian categorification via Koszul duality, as in 3.6 of [12].

Let LI denote the direct sum of the simple perverse sheaves in T . Let LI denote the full
subcategory of T consisting of the semisimple perverse sheaves in T and their shifts and Tate
twists. Let A = End•T (LI), regarded as an algebra via composition. Then Ext•T (LI ,−) defines
a fully faithful functor from LI to the category A of finitely generated graded left modules
over A.

By the decomposition theorem of [3], the endofunctors E,F of T preserve LI , as does G.
Let x, z ∈ A, and y ∈ Ext•T (LI , E(LI)). The action x · y · z = xyE(z) gives Ext•T (LI , E(LI))
the structure of a graded A-bimodule, and Ext•T (LI , E(LI))⊗A− defines an exact endofunctor
Ea of A. In the same way, F and G give rise to exact endofunctors Fa and Ga of A.

After 2.32, Ea, Fa, and Ga induce an action of Uq(sl2) on K0(A). The endomorphisms
X ∈ End•(E) and T ∈ End•(E2) induce endomorphisms Xa ∈ End(Ea) and Ta ∈ End((Ea)

2)
satisfying the relations 2.27 and 2.29. This gives A the structure of an abelian categorification.
As in 2.5, A essentially has the structure of a Uq(sl2)-categorification, in the sense of the higher
representation theory programme of Chuang and Rouquier.

The indecomposable projective objects of A are the modules Ext•T (LI , K), where K is
a simple perverse sheaf in T . Thus there is an action of Z[q, q−1] on K0(A), defined by
q · [Ext•T (LI , K)] = [Ext•T (LI , K(−1

2
)]. Let K0(LI) denote the Grothendieck group of LI as an

additive category. There is also an action of Z[q, q−1] on K0(LI), defined by q · [K] = [K(−1
2
)].

The functor Ext•T (LI ,−) induces an isomorphism Qq ⊗Z[q,q−1] K0(LI) ' Qq ⊗Z[q,q−1] K0(A)
of Uq(sl2)-modules. The Uq(sl2)-modules Q(q)⊗Z[q,q−1] K0(T ) and Qq ⊗Z[q,q−1] K0(LI) are also
isomorphic, so the decategorification of A is V .
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Remark 3.1. There is a canonical basis of V consisting of isomorphism classes of the indecom-
posable projectives in A. In 3.5.9 of [11], Zheng identifies this basis with Lusztig’s canonical
basis.

3.2. An abelian sl2-categorification of simple representations of sl2. Let V denote
the simple representation of sl2 of dimension n + 1. In this case, Proposition 2.31 takes the
following form.

Proposition 3.2. There are endofunctors E and F and endomorphisms X ∈ End•(E), T ∈
End•(E2) giving T =

⊕n
i=0DGLn(C)(Gr(i)) the structure of an sl2-categorification of V .

Via Koszul duality (as in 3.1, ignoring Tate twists), T gives rise to an abelian sl2-categorification
A of V . Indeed, A is the category of finitely generated graded left modules over the algebra
A =

⊕n
i=0 End•D(Gr(i))(Ql) '

⊕n
i=0H

•(Gr(i)).
Let Ea and Fa denote the structural endofunctors of A. Regarding H•(Gr(i, i + 1)) as an

H•(Gr(i))-H•(Gr(i+ 1))-bimodule, we have an isomorphism of functors

Ea '
n⊕
i=0

H•(Gr(i, i+ 1))⊗A −.

Regarding H•(Gr(i, i+1)) as an H•(Gr(i+1))-H•(Gr(i))-bimodule, we have an isomorphism
of functors Fa '

⊕n
i=0H

•(Gr(i, i+ 1))⊗A −.
This agrees with the weak sl2-categorification of V given in 2.2. The structural endomor-

phisms Xa ∈ End•(Ea) and Ta ∈ End•((Ea)
2) enhance 2.2 to an sl2-categorification of V .
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