
Generell Topologi — Exercise Sheet 4

Richard Williamson

May 7, 2013

Guide

The questions are organised into three overlapping themes.

Have a go at as many as you have time for — try to tackle questions from each of the
three themes. For the rest, check that you understand my solutions — let me know if
not!

(1) Questions 1 – 6 cover limit points, closure, and boundary.

(i) Questions 1 allows you to practise working with closure theoretically.

(ii) Question 2 asks you to calculate boundaries and closures in a finite example
and two geometric examples.

(iii) Question 3 allows you to practise working theoretically with boundaries. It
also introduces the notion of interior.

(iv) Question 4 explores the boundary of a product of topological spaces, and
introduces some examples where this can be used.

(v) In Question 5 you are asked to work with limit points in (R,OR).

(v) Question 6 investigates the behaviour of boundary under a homeomorphism.

(2) Questions 7 – 9 will help to develop your understanding of the notion of homeo-
morphism.

(i) Question 7 explores two examples of homeomorphisms that were introduced
in the lectures. You may particularly learn a lot from trying part (b).

(ii) Question 8 is a question about restricting homeomorphisms which we will use
frequently in the lectures.
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(iii) Question 9 is very important in geometric topology. It is part of a construction
known as Alexander’s trick. You are asked to use it to deduce that any ‘blob’
in (R2,OR2) is homeomorphic to a disc.

(3) Questions 10 – 17 concern quotient spaces. I hope that you will find the geomet-
ric questions fun! All of the geometric examples are important in algebraic and
geometric topology.

They will help you to become familiar with and visualise glueing topological spaces.
This is the most important tool in a topologist’s armoury!

(i) Question 10 allows you to practise working with the definition of a quotient
topology in a finite example.

(ii) Question 11 introduces the universal property of a quotient space which will
make use of when we discuss locally compact topological spaces in the lectures.
It is an important theoretical question, but is quite abstract — don’t worry
if you find it a little difficult.

(iii) In Question 12 you are introduced to two examples of projective spaces. The
projective plane P2(R) cannot be visualised in R3, like the Klein bottle.

(iv) In Question 13 you are introduced to the cone and suspension of a topological
space.

(v) Question 14 allows you to practise working with the Möbius band and the
Klein bottle. The different parts of the question are independent of each other
— if you cannot do a particular part, move on to the next.

(vi) In Question 15 you are introduced to the wedge sum of a pair of topological
spaces.

(vii) I particularly recommend that you try Question 16, which will allow you to
practise working with a torus. Part (c) concerns knot theory.

(viii) In Question 17 you will explore glueing sides of polygons other than the
square. The topological spaces that we obtain, known as handlebodies, will
be very important when we discuss the classification of surfaces in the last
few lectures.

(4) Question 18 is included mostly for fun. It will help you to develop your feeling for
the notion of homeomorphism.

(5) Question 19 is included mostly as a curious puzzle. Don’t worry if you cannot do
it, it will not be examined!
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Questions

1

Let (X,OX) be a topological space. Let A be a subset of X, and let OA denote the
subspace topology on A with respect to (X,OX).

Question.
(a) Prove Proposition 5.9 in the Lecture Notes.

(b) Let A′ be a closed subset of A. Prove that A′ = A ∩ A′′ for a closed subset A′′ of
(X,OX).

(c) Let A′ be a subset of A which is closed in (X,OX). Prove that A′ is closed in
(A,OA).

(d) Let A′ be a closed subset of A. Prove that if A is closed in (X,OX) then A′ is
closed in (X,OX).

(e) Let A′ be a subset of A. Let A′ denote the closure of A′ in (A,OA), and let Â′

denote the closure of A′ in (X,OX). Prove that A′ = Â′ ∩A.

(f) Let A′ be a subset of A such that A ∩A′ = ∅. Prove that if A is open in (X,OX)
then A ∩A′ = ∅.

2

Question.
(a) Let X = {a, b, c, d}, and let O be the topology on X defined by{

∅, {a}, {b, c}, {b, c, d}, {a, b, c}, X
}
.

What is the closure of {b} in X? Find a dense subset of X consisting of two
elements. What is the boundary of {b} in X? What is the boundary of {b, c} in
(X,OX)?

(b) Let X ⊂ R2 be the set depicted below.

(1, 0)

(1, 1)

( 1
2 , 0)

( 1
2 , 1)

( 1
4 , 0)

( 1
4 , 1)

( 1
8 , 0)

( 1
8 , 1)
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Explicitly, let X be the union of the sets⋃
n≥0

{
(

1

2n
, y) | y ∈ [0, 1]

}
and ⋃

n≥0

{
(x,−2n+1x+ 2) | x ∈

[ 1

2n+1
,

1

2n
]}
.

We equip X with the subspace topology OX with respect to (R2,OR2).

What is the closure of X in (R2,OR2)?

(c) What is the boundary of the vertical line {(0, y) ∈ R2 | y ∈ R} in (R2,OR2)?
What is the boundary of {(x, y) ∈ R2 | x 6= 0 and y > 0} in (R2,OR2)? What is
the boundary of the union of these two sets in (R2,OR2)?

3

Let (X,OX) be a topological space, and let A be a subset of X equipped with the
subspace topology (A,OA) with respect to (X,OX).

The interior of A in X is the union of all the subsets of A which are open in X. We
shall denote it by A◦.

Let A denote the closure of A in X.

Question.
(a) Prove that ∂XA = A ∩X \A, where X \A is the closure of X \A in X.

(b) Deduce that ∂XA is a closed subset of X.

(c) Prove that ∂XA = A \A◦.

(d) Prove that A◦ = A \ ∂XA.

(e) Find the interior of [0, 1] regarded as a subset of (R,OR) equipped with the sub-
space topology. Do the same for [0, 1), (0, 1], and (0, 1).

(f) Find the interior of D2 regarded as a subset of (R2,OR2).

(g) Prove that A is open in X if and only if A◦ = A.
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4

Let (X,OX) and (Y,OY ) be topological spaces. Let A be a subset of X, and let A′ be
a subset of Y . Let A denote the closure of A in X, and let A′ denote the closure of A′

in Y .

Question.
(a) Let A×A′ denote the closure of A×A′ in X × Y . Prove that A×A′ = A×A′.

(b) Prove that ∂X×YA×A′ = (∂XA×A′) ∪ (A× ∂YA′).

(c) Deduce that ∂R2(I2) is as claimed in Examples 5.16 (2) of the Lecture Notes.

(d) What is the boundary of the solid cylinder D2× I in (R2× I,OR2×I)? What is its
boundary in (R3,OR3)?

5

Question.
(a) Let X ⊂ R be bounded above. Prove that supX is a limit point of X in (R,OR).

(b) Let X ⊂ R be bounded below. Prove that inf X is a limit point of X in (R,OR).

(c) Let a, b ∈ R. Prove that (a, b) = [a, b) = (a, b] = [a, b] = [a, b]. Prove that
∂R(a, b) = ∂R[a, b) = ∂R(a, b] = ∂R[a, b] = {a, b}.

(d) Let (a, b) be an open interval in R. Prove that

Q ∩ (a, b) = Q ∩ [a, b) = Q ∩ (a, b] = Q ∩ [a, b] = [a, b],

where the closures are in (R,OR). What is the boundary of these four sets in
(R,OR)?

6

Question.
(a) Let (X,OX) and (Y,OY ) be topological spaces, and let

X Y
f

be a homeomorphism. Let A be a subset of X equipped with the subspace topology
OA with respect to (X,OX). Let f(A) be equipped with the subspace topology
with respect to (Y,OY ).

Prove that f(∂XA) = ∂Y f(A).
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(b) Find an example of a topological space (X,OX) and subsets A and A′ such that
the following conditions are satisfied:

(1) ∂XA = ∂XA
′,

(2) (A,OA) is not homeomorphic to (A′,OA′). Here OA denotes the subspace
topology of A with respect to (X,OX), andOA′ denotes the subspace topology
of A′ with respect to (X,OX).

(c) Find an example of a topological space (X,OX) and subsets A and A′ of X such
that the following conditions are satisfied:

(1) (A,OA) is homeomorphic to (A′,OA′). Here OA denotes the subspace topol-
ogy of A with respect to (X,OX), and OA′ denotes the subspace topology of
A′ with respect to (X,OX).

(2) ∂XA is not homeomorphic to ∂XA
′, where each is equipped with its subspace

topology with respect to (X,OX).

7

Question.
(a) Define a homeomorphism

I2 D2
f

such that f(∂R2I2) = S1.

(b) Let us define a ‘squiggle’ in (R2,OR2) to be a bounded, closed, connected subset
X of R2 which has the following properties.

(1) For every point x ∈ X there is a neighbourhood U of x in (R2,OR2) such
that U ∩X equipped with the subspace topology with respect to (R2,OR2) is
homeomorphic to either an open interval or a half-open interval.

(2) There is at least one point x ∈ X which admits a neighbourhood U in
(R2,OR2) such that U ∩X equipped with the subspace topology with respect
to (R2,OR2) is homeomorphic to a half-open interval.

The squiggle of Examples 4.10 (5) in the Lecture Notes satisfies these properties.

6



So does the letter S regarded as a subset of R2, for example. However, the letters
K and T are not squiggles — why? Also the circle is not a squiggle — why?

Prove that any squiggle is homeomorphic to (I,OI).

Prove that if (X,OX) satisfies property (1) but not property (2) then (X,OX) is
homeomorphic to (S1,OS1). Is boundedness a necessary assumption for this?

Prove that if (X,OX) satisfies properties (1) and (2) but is not closed then (X,OX)
is homeomorphic to a half-open interval.

Prove that if (X,OX) satisfies property (1) but not property (2) and is not closed
then (X,OX) is homeomorphic to an open interval.

8

Let (X,OX) and (Y,OY ) be topological spaces, and let

X Y
f

be a homeomorphism. Let A be a subset of X.

Question.
(a) Let A be equipped with the subspace topology OA with respect to (X,OX), and

let f(A) be equipped with the subspace topology Of(A) with respect to (Y,OY ).
Prove that f restricts to a homeomorphism

A f(A).

(b) Appealing to Question 7 (a) deduce that ∂R2I2 equipped with its subspace topology
with respect to I2 is homeomorphic to (S1,OS1).

(c) Let X \A be equipped with the subspace topology OX\A with respect to (X,OX),
and let Y \ f(A) be equipped with the subspace topology OY \f(A) with respect to
(Y,OY ). Prove that f restricts to a homeomorphism

X \A Y \ f(A).
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9

Question.
(a) Let

S1 S1
f

be a homeomorphism. Prove that there is a homeomorphism

D2 D2
g

such that the restriction of g to S1 is f .

(b) Let X and Y be subsets of R2 equipped with their subspace topologies OX and
OY with respect to (R2,OR2).

Suppose that

X D2
f

and

Y D2
g

are homeomorphisms such that f(∂R2X) = S1 and g(∂R2Y ) = S1.

Suppose that X ∩ Y ⊂ ∂R2X and X ∩ Y ⊂ ∂R2X . Suppose moreover that X ∩ Y
equipped with its subspace topology with respect to (R2,OR2) is homeomorphic
to (I,OI).

Draw a couple of ‘blobs’ in R2 which have this property.

Prove that (X ∪ Y,OX∪Y ) is homeomorphic to (D2,OD2), where OX∪Y is the
subspace topology on X ∪ Y with respect to (R2,OR2),

(c) Fill in the details of Examples 4.10 (4) in the Lecture Notes.

To be more precise:

8



(1) Let X be a bounded star shaped subset of R2. Let X be equipped with
its subspace topology OX with respect to (R2,OR2). Prove that there is a
homeomorphism

X D2
f

such that f(∂R2X) = S1.

Hint: consider a disc large enough to contain X.

(2) Let B be a subset of (R2,OR2) with the property that B = ∪j∈JXj for a finite
set J where:

(i) Xj is star shaped for all j ∈ J .

(ii) Xj ∩Xj′ equipped with its subspace topology with respect to (R2,OR2)
is homeomorphic to (I,OI) for all j, j′ ∈ J .

Let OB denote the subspace topology on B with respect to (R2,OR2).

By (1) and part (b) prove by induction that (B,OB) is homeomorphic to
(D2,OD2).

(3) Deduce that (B,OB) ∼= (I2,OI2).

10

Question. Let (X,OX) be the pseudo-circle of Question 8 of Exercise Sheet 1. Recall
that X = {a, b, c, d}, and that

OX =
{
∅, {b}, {c}, {b, c}, {a, b, c}, {b, c, d}, X

}
.

Let ∼ be the equivalence relation on X defined by b ∼ c. List every subset of X/ ∼
which belongs to OX/∼.

Draw the pre-order which corresponds to (X/ ∼,OX/∼).
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11

Let (X,OX) be a topological space. Let ∼ be an equivalence relation upon X, and let
OX/∼ denote the quotient topology upon X/ ∼. Let

X X/ ∼π

denote the quotient map given by x 7→ [x].

Given a topological space (Y,OY ) and a continuous map

X Y
f

let us write that f respects ∼ if for all x, x′ ∈ X such that x ∼ x′ we have that f(x) =
f(x′).

Question.
(a) Let (Y,OY ) be a topological space, and let

X Y
f

be a continuous map such that f respects ∼.

Let

X/ ∼ Y
g

be the map defined by [x] 7→ f(x). Since f respects∼ we have that g is well-defined.

Prove that g is continuous.

Note that g is the unique map with g ◦ π = f . In particular g is the unique
continuous map with g ◦ π = f . This is known as the universal property of a
quotient topology.

(b) Let (Z,OZ) be a topological space, and let

X Z
π′

be a continuous map. Suppose that for any topological space (Y,OY ) and any
continuous map
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X Y
f

which respects ∼ there is a unique continuous map

Z Y
g

such that g ◦ π′ = f .

Prove that (Z,OZ) is homeomorphic to (X/ ∼,OX/∼).

(c) Let (X,OX) and (X ′,OX′) be topological spaces, and let

X X ′
f

be a homeomorphism. Let ∼ be an equivalence relation on X, and let ∼′ be an
equivalence relation on Y . Prove that if f respects ∼ and f−1 respect ∼′, then
(X/ ∼,OX/∼) is homeomorphic to (X ′,OX′/∼′).

(d) Prove that (S2,OS2) is homeomorphic to the topological space (I2/ ∼,OI2/∼),
where ∼ is the equivalence relation on I2 defined by x ∼ x′ if x, x′ ∈ ∂R2I2.

12

Let R2 \ {0} be equipped with its subspace topology OR2\{0} with respect to (R2,OR2).
Let P1(R) be the quotient of R2 \ {0} by the equivalence relation ∼ defined by x ∼ y if
there is a line through the origin in (R2,OR2) on which x and y both lie. Then P1(R)
equipped with its quotient topology OR2/∼ is known as the real projective line.

Let R3 \ {0} be equipped with its subspace topology OR3\{0} with respect to (R3,OR3).
Let P2(R) be the quotient of R3 \ {0} by the equivalence relation ∼ defined by x ∼ y if
there is a line through the origin in (R3,OR3) on which x and y both lie. Then P2(R)
equipped with its quotient topology OR3/∼ is known as the real projective plane.

Question.
(a) Let us refer to two points on S1 as antipodal if they both lie on a straight line

through the origin. A pair of antipodal points are pictured below.
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Define an equivalence relation ∼ on S1 which identifies antipodal points.

Prove that (S1/ ∼,OS1/∼) is homeomorphic to
(
P1(R),OP1(R)

)
.

Prove moreover that (S1/ ∼,OS1/∼) is homeomorphic to (S1,OS1).

Conclude that (S1,OS1) is homeomorphic
(
P1(R),OP1(R)

)
.

(b) Define an equivalence relation ∼ on I2 to capture glueing together the two vertical
edges with a twist and glueing together the two horizontal edges with a twist.

Prove that the
(
P2(R),OP2(R)

)
is homeomorphic to (I2/ ∼,OI2/∼).

Hint: can you find a generalisation of your argument in the second step of part
(a)?

13

Let (X,OX) be a topological space. Let X × I be equipped with the product topology
OX×I .

The cone of X is the quotient of X × I by the equivalence relation ∼ defined by (x, 1) ∼
(x′, 1) for all x ∈ X, equipped with the quotient topology O(X×I)/∼. Let us denote it by
(CX,OCX).

The suspension of X is the quotient of X × I by the equivalence relation ∼ defined by
(x, 1) ∼ (x′, 1) and (x, 0) ∼ (x′, 0) for all x ∈ X, equipped with the quotient topology
O(X×I)/∼. Let us denote it by (ΣX,OΣX).

Question.
(a) Draw the cone of S1. Prove that it is homeomorphic to (D2,OD2).

(b) Let X be a subset of Rn, equipped with the subspace topology with respect to
(Rn,ORn). Let p ∈ Rn \X.

For any x ∈ X, let Lx denote the straight line from x to p. Let Cp(X) =
⋃

x∈X Lx.
We equip Cp with the subspace topology OCp(X) with respect to (Rn,ORn).

Prove that
(
Cp(X),OCp(X)

)
is homeomorphic to

(
C(X),OC(X)

)
.
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(c) Let (X,OX) be a topological space, and let
(
C(X),OC(X)

)
be its cone. Let c ∈

C(X).

Find a continuous map

C(X)× I C(X)
f

with the property that f(y, 0) = c for all y ∈ C(X) and f(y, 1) = y for all
y ∈ C(X).

A topological space with this property is said to be contractible.

(d) Draw the suspension of S1.

(e) Prove that (Sn,OSn) is homeomorphic to (ΣSn−1,OΣSn−1), for any n ≥ 1.

(f) Let (X,OX) be a topological space. Prove that (ΣX,OΣX) is homeomorphic to a
topological space obtained by glueing together two copies of (CX,OCX).

Looking at the pictures you drew in parts (a) and (d) should help!

Part of what you are required to do is to express this glueing rigorously.

14

Question.
(a) Find an equivalence relation ∼ on I2 such that (I2/ ∼,OI2/∼) can truly be pictured

as follows.

(b) Define a continuous surjective map

M2 S1
f

with the following properties.
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(1) For every x ∈ S1 we have that f−1(x) equipped with the subspace topology
with respect to (M2,OM2) is homeomorphic to (I,OI).

(2) For every x ∈ S1 there is a neighbourhood U of x such that there exists a
homeomorphism

f−1(U) U × I
hx

with f(y) = pU ◦ hx(y) for all y ∈ f−1(U).

Here U is equipped with the subspace topology with respect to S1, U × I
is equipped with the product topology OU×I , f−1(U) is equipped with the
subspace topology with respect to (M2,OM2), and

U × I U
pU

is the projection map.

A map f with these properties is known as a fibre bundle.

(3) Make sense of the limerick at the end of Examples 3.9 (5) in the Lecture Notes!

More precisely, prove first that the image under the quotient map

I2 M2
π

of the two vertical black lines pictured below is homeomorphic to (S1,OS1). We
refer to it as the boundary circle of M2.

Then prove that (K2,OK2) is homeomorphic to the topological space obtained by
glueing together two copies of (M2,OM2) at their boundary circles.

Part of what you are required to do is to make sense of this glueing precisely!
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(4) Prove that the topological space obtained by glueing a Möbius band (M2,OM2)
to a disc (D2,OD2) by identifying the boundary circle of M2 defined in (3) to the
boundary circle of D2 is homeomorphic to

(
P2(R),OP2(R)

)
.

Again, part of what you are required to do is to make sense of this glueing precisely.

15

Question.
Let (X,OX) and (Y,OY ) be topological spaces. Let x ∈ X and y ∈ Y .

The wedge sum of X and Y is the quotient of (X tY,OXtY ) be the equivalence relation
defined by (x′, y) ∼ (x, y′) for all x′ ∈ X and y′ ∈ Y .

We denote it by X ∨ Y .

(a) Draw the wedge sum S1 ∨ S1, picking an arbitrary pair of points to work with.
Make sense of and draw the wedge sum S1 ∨ S1 ∨ S1 ∨ S1 ∨ S1.

(b) Draw the wedge sum S2 ∨ S2. Find an equivalence relation ∼ on S2 such that
(S2,OS2/∼) is homeomorphic to S2 ∨ S2.

16

Question.
(a) Let ∼ denote the equivalence relation on T 2 given by x ∼ x′ for x and x′ belonging

to the circle indicated below.

Draw (T 2/ ∼,OT 2/∼).

Can you find a way to rigorously define the equivalence relation ∼ via the definition
of T 2 as a quotient of I2?

Let G be a subset of R2 as pictured below. Let OG denote the subspace topology
on G with respect to (R2,OR2).
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Define an equivalence relation ≈ on G such that (G/ ≈,OG/≈) is homeomorphic
to (T 2/ ∼,OT 2/∼).

(b) Let ∼ denote the equivalence relation on T 2 defined by both x ∼ x′ for x and x′

belonging to the red circle indicated below and y ∼ y′ for y and y′ belonging to
the green circle indicated below.

Which familiar topological space is homeomorphic to (T 2/ ∼,OT 2/∼)? Can you
find a way to rigorously prove it?

(c) Let K denote the subset of I2 depicted in red below.

(0, 0) ( 1
3 , 0) ( 2

3 , 0)

(0, 12 ) (1, 12 )

( 1
3 , 1) ( 2

3 , 1) (1, 1)

We can think of this as follows. Begin at (0, 0), and follow a line of gradient 2
3

until we hit a side of I2. Jump over to the other side, and repeat this process.
Eventually we end up at (1, 1).

Prove that the image of K under the quotient map

I2 T 2
π

is homeomorphic to S1.

In fact the image of K under the quotient map π is the trefoil knot, wrapped
around a torus!

Try to visualise this! If your artistic skills are good, try to draw it!
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If anybody can make a nice picture of the trefoil wrapped around a torus, I would
be delighted if you could scan it and send it to me — I will upload to the course
webpage and to the front cover of the lecture notes!

A knot which wraps around the torus like this is known as a torus knot. There is
a link wrapping around a torus for any rational number p

q , obtained by working

with lines of gradient p
q in place of 2

3 above.

Draw the subset of I2 which corresponds in this way to 3
4 . Draw the corresponding

knot in the usual way — if you can visualise and/or draw it wrapped around the
torus, that’s even better!

Draw the subset of I2 which corresponds in this way to 2
4 . Draw the corresponding

link in the usual way — again if you can visualise and/or draw it wrapped around
the torus, that’s even better!

Prove that if we take lines with an irrational gradient then the image under π is a
dense subset of (T 2,OT 2).

17

Question.
(a) Let X be an octagon, regarded as a subset of R2 as below. We equip X with the

subspace topology OX with respect to (R2,OR2).

Let ∼ denote the equivalence relation on X which identifies the sides with the
same colour.
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Let (H2,OH2) denote the topological space obtained by drilling two disjoint holes
right through (I3,OI3).

We can construct it by taking the product with I of a copy of I2 with the interiors
of two discs cut out as below.

Prove that (X/ ∼,OX/∼) is homeomorphic to (H2,OH2).

(d) Let (Hn,OHn) be the topological space obtained by taking a copy of I3 and drilling
n dsijoint holes right through it.

Let X denote the regular polygon X with 4n edges. Equip X with the subspace
topology OX with respect to (R2,OR2).

Find an equivalence relation on X such that (X/ ∼,OX/∼) is homeomorphic to
(Hn,OHn).

The topological space (Hn,OHn) is known as a handlebody. The reason for the
name will be revealed when we discuss the classification of surfaces in the last few
lectures.

18

Question. When learning topology, it is a rite of passage to consider the following: why
is a coffee mug (with a handle!) homeomorphic to a doughnut?

Better not sit with a topologist in a café if you wish to avoid embarrassing glances!

What is a coffee mug without a handle homeomorphic to?

19

Question. (a) Let X be a topological space, and let A be a subset of X. Prove
that there are at most 14 possible sets which can be obtained by the following
procedure.

(1) Either take the complement of A in X or take the closure of A in X.

(2) Denote the resulting set by A′. Go back to Step (1), replacing A by A′.
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(b) Find a subset A of R for which one can obtain exactly 14 sets by the procedure of
(a).
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