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1 Tuesday 15th January

1.1 Topological spaces — definition, terminology, finite examples

Definition 1.1. A topological space is a pair (X,O) of a set X and a set OX of subsets
of X, such that the following conditions are satisfied.

(1) The empty set ∅ belongs to O.

(2) The set X itself belongs to O.

(3) Let U be a (possibly infinite) union of subsets of X belonging to O. Then U
belongs to O.

(4) Let U and U ′ be subsets of X belonging to O. Then the set U ∩ U ′ belongs to O.

Remark 1.2. By induction, the following condition is equivalent to (4).

(4’) Let {Uj}j∈J be a finite set of subsets of X belonging to O. Then
⋂

j Uj belongs to
O.

Terminology 1.3. Let (X,O) be a topological space. We refer to O as a topology on
X.

� A set may be able to be equipped with many different topologies! See Examples
1.7.

Convention 1.4. Nevertheless, a topological space (X,O) is often denoted simply by
X. To avoid confusion, we will not make use of this convention, at least in the early
part of the course.

Notation 1.5. Let X be a set. We will write A ⊂ X to mean that A is a subset of X,
allowing that A may be equal to X. In the past you may instead have written A ⊆ X.

Terminology 1.6. Let (X,O) be a topological space. If U ⊂ X belongs to O, we say
that U is an open subset of X with respect to O, or simply that U is open in X with
respect to O.

If V ⊂ X has the property that X \ V is an open subset of X with respect to O, we
say that V is a closed subset of X with respect to O, or simply that V is closed in X
with respect to O.

Examples 1.7.

(1) We can equip any set X with the following two topologies.

(i) Discrete topology. Here we define O to be the set of all subsets of X. In other
words, O is the power set of X.
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(ii) Indiscrete topology. Here we define O to be the set {∅, X}. By conditions
(1) and (2) of Definition 1.1, any topology on X must include both ∅ and X.
Thus O is the smallest topology with which X may be equipped.

(2) Let X = {a} be a set with one element. Then X can be equipped with exactly
one topology, O = {∅, X}. In particular, the discrete topology on X is the same
as the indiscrete topology on X.

The topological space (X,O) is important! It is known as the point.

(3) Let X = {a, b} be a set with two elements. We can define exactly four topologies
upon X.

(i) Discrete topology. O ··=
{
∅, {a}, {b}, X

}
.

(ii) O ··=
{
∅, {a}, X

}
.

(iii) O ··=
{
∅, {b}, X

}
.

(iv) Indiscrete topology. O ··=
{
∅, X

}
.

Up to the bijection

X X
f

given by a 7→ b and b 7→ a, or in other words up to relabelling the elements of X,
the topologies of (ii) and (iii) are the same.

The topological space (X,O) where O is defined as in (ii) or (iii) is known as the
Sierpiński interval or Sierpiński space.

(4) Let X = {a, b, c} be a set with three elements. We can define exactly 29 topologies
upon X! Again, up to relabelling, many of these topologies are the same.

(i) For instance,
O ··=

{
∅, {b}, {a, b}, {b, c}, X

}
defines a topology on X.

(ii) But O ··=
{
∅, {a}, {c}, X

}
does not define a topology on X. This is because

{a} ∪ {c} = {a, c}

does not belong to O, so condition (3) of Definition 1.1 is not satisfied.

(iii) Also, O ··=
{
∅, {a, b}, {a, c}, X

}
does not define a topology on X. This is be-

cause {a, b}∩{b, c} = {b} does not belong to O, so condition (4) of Definition
1.1 is not satisfied.

There are quite a few more ‘non-topologies’ on X.
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1.2 Towards a topology on R — recollections on completeness of R

Notation 1.8. Let a, b ∈ R.

(1) We refer to a subset of R of one of the following four kinds as an open interval.

(i) (a, b) ··= {x ∈ R | a < x < b}.
(ii) (a,∞) ··= {x ∈ R | x > a}.
(iii) (−∞, b) ··= {x ∈ R | x < b}.
(iv) R, which we may sometimes also denote by (−∞,∞).

(2) We refer to a subset of R of the following kind as a closed interval.

[a, b] ··= {x ∈ R | a ≤ x ≤ b}

(3) We refer to a subset of R of one of the following four kinds as a half open interval.

(i) [a, b) ··= {x ∈ R | a ≤ x < b}.
(ii) (a, b] ··= {x ∈ R | a < x ≤ b}.
(iii) [a,∞) ··= {x ∈ R | x ≥ a}.
(iv) (−∞, b] ··= {x ∈ R | x ≤ b}.

Recollection 1.9. The key property of R is completeness. There are many equiva-
lent characterisations of this property — Theorem 1.10 and Theorem 1.15 are the two
characterisations that are of importance to us here.

Theorem 1.10. Let {xj}j∈J be a (possibly infinite) set of real numbers. Suppose that
there exists a b ∈ R such that xj ≤ b for all j ∈ J . Then there exists a b′ ∈ R such that:

(i) xj ≤ b′ for all j ∈ J ,

(ii) if b′′ ∈ R has the property that xj ≤ b′′ for all j ∈ J , then b′′ ≥ b′.

Remark 1.11. In other words, if {xj}j∈J has an upper bound b, then {xj}j∈J has an
upper bound b′ which is less than or equal to any upper bound b′′ of {xj}j∈J .

Terminology 1.12. Let {xj}j∈J be a set of real numbers which admits an upper bound.
We refer to the corresponding least upper bound b′ of {xj}j∈J that the completeness of
R in the form of Theorem 1.10 gives us as the supremum of {xj}j∈J . We denote it by
supxj .

Recollection 1.13. Recall from your early courses in real analysis some examples of a
supremum. For instance, the supremum of the set {1− 1

n}n∈N is 1.

0 1
2

1

The picture shows the elements of {1− 1
n}n∈N for 1 ≤ n ≤ 50, getting closer and closer

to 1 without reaching it!
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Notation 1.14. Let {xj}j∈J be a set of real numbers such that for every b ∈ R there is
a k ∈ J with the property that xk > b. In other words, we assume that {xj}j∈J is not
bounded above. In this case, we write supxj =∞.

Theorem 1.15. Let {xj}j∈J be a (possibly infinite) set of real numbers. Suppose that
there exists a b ∈ R such that xj ≥ b for all j ∈ J . Then there exists a b′ ∈ R such that:

(i) xj ≥ b′ for all j ∈ J ,

(ii) if b′′ ∈ R has the property that xj ≥ b′′ for all j ∈ J , then b′′ ≤ b′.

Remark 1.16. In other words, if {xj}j∈J has a lower bound b, then {xj}j∈J has a lower
bound b′ which is greater than or equal to any lower bound b′′ of {xj}j∈J .

Terminology 1.17. Let {xj}j∈J be a set of real numbers which admits a lower bound.
We refer to the corresponding greatest upper bound b′ of {xj}j∈J that the completeness
of R in the form of Theorem 1.15 gives us as the infimum of {xj}j∈J . We denote it by
inf xj .

Recollection 1.18. Recall from your early courses in real analysis some examples of
an infimum. For instance, the infimum of the set { 1n}n∈N is 0.

0 1
2

1

The picture shows the elements of { 1n}n∈N for 1 ≤ n ≤ 50, getting closer and closer to 0
without reaching it!

Notation 1.19. Let {xj}j∈J be a set of real numbers such that for every b ∈ R there is
a k ∈ J with the property that xk < b. In other words, we assume that {xj}j∈J is not
bounded below. In this case, we write inf xj = −∞.

Goal 1.20. To equip R with a a topology to which the open intervals in R belong.

Observation 1.21. Let a, b, a′, b′ ∈ R. Then

(a, b) ∩ (a′, b′) =

{(
sup{a, a′}, inf{b, b′}

)
if sup{a, a′} < inf{b, b′},

∅ otherwise.

Remark 1.22. Thus condition (4) of Definition 1.1 is satisfied forO′ ··= {open intervals in R}.

� However, condition (3) of Definition 1.1 is not satisfied forO′ ··= {open intervals in R}.
Indeed, take any two open intervals in R which do not intersect. For example, (1, 2)

and (3, 5). The union of these two open intervals is disjoint, and in particular is not an
open interval.

1 2 3 4 5
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Idea 1.23. Observing this, we might try to enlarge O′ to include disjoint unions of
(possibly infinitely many) open intervals in R. This works! The set

O ··= {
⊔
j∈J

Uj | Uj is an open interval in R}

does equip R with a topology.
We will not prove this now. It will be more convenient for us to build a topology on

R by a formal procedure — the topology ‘generated by’ open intervals in R. We will see
this in the next lecture, as Definition 2.5. Later on, we will prove that this topology is
exactly O.

Observation 1.24. However, we can already appreciate one of the two key aspects of
the proof. Suppose that we have a set {(aj , bj)}j∈J of (possibly infinitely many) open
intervals in R. Suppose that

⋃
j∈J(aj , bj) cannot be obtained as a disjoint union of any

pair of subsets of R. Then ⋃
j∈J

(aj , bj) = (inf aj , sup bj).

Remark 1.25. Observation 1.24 expresses the intuition that a ‘chain of overlapping
open intervals’ is an open interval. For instance, the union of {(−3, 1), (−1, 2), (12 , π)} is
(−3, π).

−3 −1 1
2

1 2 π

Remark 1.26. By contrast with Observation 1.21, Observation 1.24 relies on the full
strength of the completeness of R as expressed in Theorem 1.10 and Theorem 1.15.

� An intersection of open intervals, even a ‘chain of overlapping open intervals’, need
not be an open interval. For instance,

⋂
n∈N(− 1

n ,
1
n) = {0}, and the set {0} is not

an open interval in R!

−1 1
2

0 1
2

1

The picture shows the suprema and infima of the intervals (− 1
n ,

1
n) for 1 ≤ n ≤ 20.
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Summary 1.27.

(1) A union of (possibly infinitely many) open intervals in R is an open interval, if
these open intervals ‘overlap sufficiently nicely’.

(2) An intersection of a pair of open intervals in R which overlap is an open interval.

(3) An intersection of infinitely many open intervals in R need not be an open interval,
even if these open intervals ‘overlap sufficiently nicely’.

Remark 1.28. These three facts together motivate the requirement in condition (3) of
Definition 1.1 that unions of possibly infinitely many subsets of X belonging to O belong
to O, by contrast with condition (4) of Definition 1.1, in which an intersection of only a
pair of subsets of X belonging to O is required to belong to O.

Remark 1.29. In Exercise Sheet 1 we will explore topological spaces (X,O) with the
property that an intersection of any set of subsets of X, possibly infinitely many, be-
longing to O belongs to O. These topological spaces are known as Alexandroff spaces.

1.3 Canonical constructions of topological spaces — subspace topologies,
product topologies, examples

Assumption 1.30. For now let us assume that we have equipped R with a topology
OR to which every open interval in R belongs. As indicated in Idea 1.23, will construct
OR in the next lecture.

Theme 1.31. Given (R,OR), we can construct many topological spaces in a ‘canonical
way’.

Preview 1.32. Over the next few lectures, we will become acquainted with four tools:

(1) subspace topologies,

(2) product topologies,

(3) quotient topologies,

(4) coproduct topologies.

We will investigate (1) and (2) now. In Lecture 3, we will investigate (3). Later, we will
investigate (4).

Proposition 1.33. Let (Y,OY ) be a topological space. Let X be a subset of Y . Then

OX ··= {X ∩ U | U ∈ OY }

defines a topology on X.

Proof. Exercise Sheet 1.
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Terminology 1.34. Let (Y,OY ) be a topological space. Let X be a subset of Y . We
refer to the topology OX on X defined in Proposition 1.33 as the subspace topology on
X.

Example 1.35. Let I denote the closed interval [0, 1] in R. Let OI denote the subspace
topology on I with respect to the topological space (R,OR). We refer to the topological
space (I,OI) as the unit interval.

Explicitly, OI consists of subsets of I of the following three kinds, in addition to ∅ and
I itself.

(1) Open intervals (a, b) with a, b ∈ R, a > 0, and b < 1.

0 a b 1

(2) Half open intervals [0, b) with 0 < b < 1.

0 b 1

(3) Half open intervals (a, 1] with 0 < a < 1.

0 a 1

Proposition 1.36. Let (X,OX) and (Y,OY ) be topological spaces. Let OX×Y denote
the set of subsets W of X × Y such that for every (x, y) ∈ W there exists U ∈ OX and
U ′ ∈ OY with x ∈ U , y ∈ U ′, and U × U ′ ⊂ W . Then OX×Y defines a topology on
X × Y .

Proof. Exercise Sheet 1.

Terminology 1.37. Let (X,OX) and (Y,OY ) be topological spaces. We refer to the
topology OX×Y on X ×Y defined in Proposition 1.36 as the product topology on X ×Y .

Examples 1.38.

(1) R2 ··= R× R, equipped with the product topology OR×R.

8



A typical example of a subset of R2 belonging to OR×R is an ‘open blob’ U .

U

Indeed by the completeness of R we have that for any x ∈ R belonging to U there
is an ‘open rectangle’ contained in U to which x belongs. By an ‘open rectangle’
we mean a product of an open interval (a, b) with an open interval (a′, b′), for some
a, b, a′, b′ ∈ R.

U

x

(a, b)× (a′, b′)

� The boundary of U in the last two pictures is not to be thought of as belonging to
U .

(2) I2 ··= I× I, equipped with the product topology OI×I . We refer to the topological
space (I2,OI×I) as the unit square.
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(0, 0) (1, 0)

(1, 1)(0, 1)

A typical example of a subset U of I2 belonging to OI×I is an intersection with I2

of an ‘open blob’ in R2.

(0, 0) (1, 0)

(1, 1)(0, 1)

U

(0, 0) (1, 0)

(1, 1)(0, 1)

U

(0, 0) (1, 0)

(1, 1)(0, 1)

U
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(0, 0) (1, 0)

(1, 1)(0, 1)

U

� In the first figure, the boundary of U is not to be thought of as belonging to U . In
the last three figures, the part of the boundary of U which intersects the boundary
of the square belongs to U , but the remainder of the boundary of U is not to be
thought of as belonging to U .

(3) R3 ··= R× R× R.

A typical example of a subset U of R3 belonging to OR×R×R is a ‘3-dimensional
open blob’. I leave it to your imagination to visualise one of these!

By the completeness of R, for any x ∈ U there is an ‘open rectangular cuboid’
contained in U to which x belongs.

x

� Our notation OR×R×R is potentially ambiguous, since we may cook up a product
topology on R3 either by viewing R3 as (R×R)×R or by viewing R3 as R×(R×R).
However, these two topologies coincide, and the same is true in general.

(4) I3 ··= I × I × I, equipped with the product topology OI×I×I . We refer to the
topological space (I3,OI×I×I) as the unit cube.
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A typical example of a subset of I3 belonging to OI×I×I is the intersection of a
‘3-dimensional open blob’ in R3 with I3. Again I leave the visualisation of such a
subset to your imagination!

(5) Examples (1) and (3) generalise to a product topology upon Rn ··= R× . . .× R︸ ︷︷ ︸
n

for any n ∈ N. Examples (2) and (4) generalise to a product topology upon
In ··= I × . . .× I︸ ︷︷ ︸

n

for any n ∈ N.

(6) S1 ··= {(x, y) ∈ R2 | ‖(x, y)‖ = 1}, equipped with the subspace topology OS1 with
respect to the topological space (R2,OR×R). We refer to (S1,OS1) as the circle.

A typical subset of S1 belonging to OS1 is the intersection of an ‘open blob’ in R2

with S1. For instance, the subset U of S1 pictured below belongs to OS1 .

U

Indeed, U is the intersection with S1 of the ‘open blob’ in the picture below.

(7) D2 ··= {(x, y) ∈ R2 | ‖(x, y)‖ ≤ 1}, equipped with the subspace topology OD2 with
respect to the topological space (R2,OR×R). We refer to (D2,OD2) as the disc.
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A typical example of a subset of D2 belonging to OD2 is an intersection of an ‘open
blob’ in R2 with D2.

U

U

U

� In the first figure, the boundary of U is not to be thought of as belonging to U . In
the last two figures, the part of the boundary of U which intersects the boundary
of the disc belongs to U , but the remainder of the boundary of U is not to be
thought of as belonging to U .

(8) For any k ∈ R with 0 < k < 1, Ak ··= {(x, y) ∈ R2 | k ≤ ‖(x, y)‖ ≤ 1}, equipped
with the subspace topology OAk

with respect to the topological space (R2,OR2).
We refer to (Ak,OAk

) as an annulus.

A typical example of a subset of Ak belonging to OAk
is an intersection of an ‘open

blob’ in R2 with Ak.
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U

(9) S1 × I, equipped with the product topology OS1×I . We refer to (S1 × I,OS1×I)
as the cylinder.

(10) D2 × I, equipped with product topology OD2×I . We refer to (D2 × I,OD2×I) as
the solid cylinder.
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