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2 Thursday 17th January

2.1 Basis of a topological space — generating a topology with a specified
basis — standard topology on R — examples

Definition 2.1. Let (X,O) be a topological space. A basis for (X,O) is a set O′ of
subsets of X belonging to O such that every subset U of X belonging to O may be
obtained as a union of subsets of X belonging to O′.

Proposition 2.2. Let X be a set, and let O′ be a set of subsets of X such that the
following conditions are satisfied.

(1) X can be obtained as a union of (possibly infinitely many) subsets of X belonging
to O′.

(2) Let U and U ′ be subsets of X belonging to O′. Then U ∩ U ′ belongs to O′.

Let O denote the set of subsets U of X which may be obtained as a union of (possibly
infinitely many) subsets of O′. Then (X,O) is a topological space, with basis O′.

Proof. We verify conditions (1)-(4) of Definition 1.1.

(1) We think of ∅ an an ‘empty union’ of subsets of X belonging to O′, so that ∅ ∈ O.
If you are not comfortable with this, just change the definition of O to include ∅
as well.

(2) We have that X ∈ O by definition of O together with the fact that O′ atsifies
condition (1) in the statement of the proposition.

(3) Let {Uj}j∈J be a set of subsets of X belonging to O. For every j ∈ J , by definition
of O we have that X =

⋃
k∈Kj

U ′k for a set Kj , where U ′k ∈ O′. Then⋃
j∈J

Uj =
⋃
j∈J

( ⋃
k∈Kj

U ′k

)
=

⋃
r∈
(⋃

j∈J Kj

)U ′r.
Thus

⋃
j∈J Uj is a union of subsets of X belonging to O′, and hence

⋃
j∈J Uj

belongs to O.

(4) Let U and U ′ be subsets of X which belong to O. By definition of O, we have that
U =

⋃
j∈J Uj where Uj ∈ O′ for all j ∈ J , and that U ′ =

⋃
j′∈J ′ U

′
j , where U ′j ∈ O′

for all j′ ∈ J ′. Then

U ∩ U ′ =
( ⋃
j∈J

Uj

)
∩
( ⋃
j′∈J ′

U ′j′
)

=
⋃

(j,j′)∈J×J ′
Uj ∩ Uj′ .
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Since O′ satisfies condition (2) of the proposition, we have that Uj ∩ Uj′ belongs
to O′ for every (j, j′) ∈ J × J ′. Thus U ∩ U ′ belongs to O′.

By construction of O, we have that O′ is a basis for (X,O).

Terminology 2.3. Let X be a set, and let O′ be a set of subsets of X satisfying
conditions (1) and (2) of Proposition 2.2. Let O denote the set of unions of subsets of
X belonging to O′, which by Proposition 2.2 defines a topology on X. We refer to O as
the topology on X which is generated by O′.

Observation 2.4. Let O′ ··= {(a, b) | a, b ∈ R}. Then O′ satisfies condition (1) of
Proposition 2.2 with respect to R, since for example R =

⋃
n∈N(−n, n). By Observation

1.21, we have that O′ satisfies condition (2) of Proposition 2.2.

Definition 2.5. The standard topology on R is the topology OR generated by O′.

Observation 2.6. All open intervals in R belong to OR. We have the following cases.

(1) If a, b ∈ R, then by definition of O and O′ we have that (a, b) ∈ OR.

(2) If a ∈ R, we have that (a, inf) =
⋃
n∈N(a, a+ n). Since (a, a+ n) belongs to O′ for

every n ∈ N, we deduce that (a, inf) ∈ OR.

(3) If b ∈ R, we have that (− inf, b) =
⋃
n∈N(b − n, b). Since (b − n, b) belongs to O′

for every n ∈ N, we deduce that (− inf, b) ∈ OR.

(4) We noted in Observation 2.4 that R ∈ OR.

Remark 2.7. As mentioned in Idea 1.23, we will prove later in the course that OR
consists exactly of disjoint unions of (possibly infinitely many) open intervals.

Observation 2.8. Let (X,O) be a topological space, and let O′ be a basis for (X,O).
Let O′′ be a set of subsets of X. If every U ⊂ X such that U ∈ O′ can be obtained as a
union of subsets of O′′, then O′′ defines a basis for (X,O).

Examples 2.9.

(1) For ε ∈ R such that ε > 0, and for any x ∈ R, let

Bε(x) ··= {y ∈ R | x− ε < y < x+ ε}.

x− ε x x+ ε

In other words, Bε(x) is the open interval (x− ε, x+ ε). Then

O′′ ··= {Bε(x) | ε ∈ R and ε > 0, and x ∈ R}

is a basis for (R,OR).
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Proof. By Observation 2.8, it suffices to prove that for every a, b ∈ R we can obtain
the open interval (a, b) as a union of subsets of R belonging to O′′. In fact, (a, b)
itself already belongs to O′′. Indeed

(a, b) = B b−a
2

(a+ b

2

)
.

a a+b
2 b

b−a
2

b−a
2

In particular, we see that a topological space may admit more than one basis.

(2) Let X = {a, b, c, d, e}, and let O denote the topology on X given by{
∅, {b}, {a, b}, {b, c}, {d, e}, {a, b, c}, {b, d, e}, {a, b, d, e}, {b, c, d, e}, X

}
.

Then
O1 ··=

{
{b}, {a, b}, {b, c}, {d, e}

}
is a basis for (X,O).

The same holds for any set O2 of subsets of X such that O1 ⊂ O2. No other set
of subsets of X is a basis for (X,O). For example,

O3 ··=
{
{a, b}, {b, c}, {d, e}

}
}

is not a basis for (X,O), since {b} cannot be obtained as a union of subsets of X
belonging to O′′. Similarly

O4 ··=
{
{b}, {a, b}, {d, e}

}
is not a basis for O′′, since {b, c} cannot be obtained as a union of subsets of X
belonging to O4.

(3) Let
O′ ··= {(−∞, b) | b ∈ R}.

Then O′ is not a basis for (R,OR), since for example we cannot obtain the open
interval (0, 1) as a union of open intervals of the form (−∞, b).
But O′ satisfies the conditions of Proposition 2.2, and thus generates a topology
O on R. In the manner of Observation 1.24, one can prove that O = O′ ∪ {∅,R}.
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2.2 Continuous maps — examples — continuity of inclusion maps,
compositions of continuous maps, and constant maps

Notation 2.10. Let X and Y be sets, and let

X Y
f

be a map. Let U be a subset of Y . We define f−1(U) to be {x ∈ X | f(x) ∈ U}.

Definition 2.11. Let (X,OX) and (Y,OY ) be topological spaces. A map

X Y
f

is continuous if for every U ∈ OY we have that f−1(U) belongs to OX .

Remark 2.12. A map

R R
f

is continuous with respect to the standard topology on both copies of R if and only if
it is continuous in the ε − δ sense that you know from real analysis/calculus. See the
Exercise Sheet.

Examples 2.13.

(1) Let X ··= {a, b}, and let O denote the topology on X given by
{
∅, {b}, X

}
, so

that (X,O) is the Sierpiński interval. Let X ′ ··= {a′, b′, c′}, and let O′ denote the
topology on X ′ given by{

∅, {a′}, {c′}, {a′, c′}, {b′, c′}, X ′
}
.

Let

X Y
f

be given by a 7→ b′ and b 7→ c′. Then f is continous.

Proof. We verify that f−1(U) ∈ OX for every U ∈ OY , as follows.

(1) f−1(∅) = ∅
(2) f−1

(
{a′}

)
= ∅

(3) f−1
(
{c′}

)
= {b′}

(4) f−1
(
{a′, c′}

)
= {b}

(5) f−1(Y ) = X.
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Let

Y X
g

be given by a 7→ c′ and b 7→ b′. Then g is not continuous, since for example
g−1
(
{c′}

)
= {a}, which does not belong to OX .

(2) Let

D2 × I D2
f

be given by (x, y, t) 7→
(
(1 − t)x, (1 − t)y

)
. We will prove on the Exercise Sheet

that f is continuous.

We may think of f as a ‘shrinking of D2 onto its centre’, as t moves from 0 to 1.

We can picture the image of D2 × {t} under f as follows as t moves from 0 to 1.

0 1
4

1
2

3
4 1

(3) Fix k ∈ R. Let

I S1
f

be given by t 7→ φ(kt), where φ is the continuous map of Question 8 of Exercise
Sheet 3. Let us picture f for a few values of k.
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(1) Let k = 1. In words, f begins at the point (0, 1), and travels exactly once
around S1.

� Don’t be misled by the picture — the path really travels around the circle,
not slightly outside it.

We may picture f
(
[0, t]

)
as t moves from 0 to 1 as follows.

0 1
4

1
2

3
4 1

Recall from Examples 1.38 (6) that a typical open subset U of S1 is as depicted
below.

(

)

Then f−1(U) is as depicted below. In particular, f−1(U) is open in I. Thus
intuitively we can believe that f is continuous!

0 1
4

1
2

3
4 1

( )
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(2) Let k = 2. In words, f begins at the point (0, 1), and travels exactly twice
around S1.

� Again, don’t be misled by the picture — the path really travels twice around
the circle, thus passing through every point on the circle twice, not in a spiral
outside the circle as drawn.

We may picture f
(
[0, t]

)
as t moves from 0 to 1 as follows.

0 1
4

1
2

3
4 1

Let U ⊂ S1 be the open subset depicted below.

(

)

Then f−1(U) a disjoint union of open intervals as depicted below, so is open
in I.

0 1
4

1
2

3
4 1

( ) ( )
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(3 Let k = 3
2 . In words, f begins at the point (0, 1), and travels exactly one and

a half times around S1.

We may picture f
(
[0, t]

)
as t moves from 0 to 1 as follows.

0 1
4

1
2

3
4 1

Let U ⊂ S1 be the open subset depicted below.

(

)

Then f−1(U) is a disjoint union of open subsets of I as depicted below, so is
open in I.

0 1
4

1
2

3
4 1

( ) ( )

(4) Let

I I
f
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be given by t 7→ 1 − t. We will prove on the Exercise Sheet that f is continuous.
We may depict f as follows.

0

0

1

1

Let U ⊂ I be the open subset depicted below.

0 1

( )

Then f−1(U) is as depicted below. In particular, f−1(U) is open in I.

0 1

( )

(5) Let

I S1
f

be the map given by

t 7→

{
φ
(
1
2 t
)

if 0 ≤ t ≤ 1
2 ,

φ(t) if 1
2 < t ≤ 1.

As in (3), φ is the map of Question 8 of Exercise Sheet 3.

We may depict f as follows.
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Then f is not continuous. Indeed, consider an open subset U of S1 as depicted
below.

(

)

Then f−1(U) is a half open interval as depicted below.

0 1
4

1
2

3
4 1

( ]

In particular, f−1(U) is not an open subset of I.

(5) Consider a map

I D2
f

as depicted below. A precise definition of this map is not important here — the
path should be interpreted as beginning on the top left of the disc, moving to the
bottom left, jumping to the top right, and then moving to the bottom right.

Let U ⊂ D2 be an open subset of D2 depicted as a dashed rectangle below.

Then f−1(U) is a half open interval in I as depicted below. In particular, f−1(U)
is not open in I.
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0 1
4

1
2

3
4 1

( ]

Terminology 2.14. Let X be a set, and let A be a subset of X. The inclusion map
with respect to A and X is the map

A X

given by a 7→ a. We will often denote it by

A X.

Proposition 2.15. Let (X,OX) be a topological space. Let A ⊂ X be equipped with
the subspace topology OA with respect to (X,OX). Then the inclusion map

A X
i

is continuous.

Proof. Let U be a subset of X belonging to OX . Then i−1(U) = A ∩ U . By definition
of OA, we have that A ∩ U belongs to OA. Hence i−1(U) belongs to OA.

Proposition 2.16. Let (X,OX), (Y,OY ), and (Z,OZ) be topological spaces. Let

X Y
f

and

Y Z
g

be continuous maps. Then the map

X Z
g ◦ f

is continuous.

Proof. Let U be a subset of Z belonging to OZ . Then

(g ◦ f)−1(U) = {x ∈ X | g
(
f(x)

)
∈ U}

= {x ∈ X | f(x) ∈ g−1(U)}
= f−1

(
g−1(U)

)
.

Since g is continuous, we have that g−1(U) ∈ OY . Hence, since f is continuous, we have
that f−1

(
g−1(U)

)
∈ OX . Thus (g ◦ f)−1(U) ∈ OX .
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Terminology 2.17. Let X and Y be sets. A map

X Y
f

is constant if f(x) = f(x′) for all x, x′ ∈ X.

Proposition 2.18. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a constant map. Then f is continuous.

Proof. Since f is constant, f(x) = y for some y ∈ Y and all x ∈ X. Let U ∈ OY . If
y 6∈ U , then f−1(U) = ∅, which belongs to OX . If y ∈ U , then f−1(U) = X, which also
belongs to OX .
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