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3 Tuesday 22nd January

3.1 Projection maps are continuous — pictures versus rigour

Notation 3.1. Let X and Y be sets. We denote by

X × Y X
p1

the map given by (x, y) 7→ x. We denote by

X × Y Y
p2

the map given by (x, y) 7→ y.

Proposition 3.2. Let (X,OX) and (Y,OY ) be topological spaces. Let X × Y be
equipped with the product topology OX×Y . Then

X × Y X
p1

and

X × Y Y
p2

define continuous maps.

Proof. Suppose that U ⊂ X belongs to OX . Then p−11 (U) = U × Y , which belongs to
OX×Y .

Suppose that U ′ ⊂ Y belongs to OY . Then p−12 (U ′) = X × U ′, which belongs to
OX×Y .

Remark 3.3. It is often helpful to our intuition to picture p1 and p2. Let us consider

I × I I
p1

and

I × I I.
p2

Up to a bijection between I and I × {0} = {(x, 0) | x ∈ [0, 1]}, we may think of p1 as
the map (x, y) 7→ (x, 0).

(0, 0) (1, 0)

(0, 1) (1, 1)
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Up to a bijection between I and {0} × I = {(0, y) | y ∈ [0, 1]}, we may think of p2 as
the map (x, y) 7→ (0, y).

(0, 0) (1, 0)

(0, 1) (1, 1)

It is important to note, though, that there will typically be many good ways that we
may picture p1 and p2. In this example, we may for instance equally think of p1 as the
map given by (x, y) 7→ (x, 1)

(0, 0) (1, 0)

(0, 1) (1, 1)

and/or think of p2 as the map given by (x, y) 7→ (1, y).

(0, 0) (1, 0)

(0, 1) (1, 1)

The moral to draw from this is that pictures help our intuition, often profoundly. In
topology we often see a proof before we can write it down!

But we must never forget that it is with rigorous definitions and proofs — which are
independent of any particular picture — that we must ultimately be able to capture our
intuition.

3.2 Quotient topologies

Notation 3.4. Let X be a set, and let ∼ be an equivalence relation on X. We denote
by X/ ∼ the set

{[x] | x ∈ X}
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of equivalences classes of X with respect to ∼. We denote by

X X/ ∼π

the map given by x 7→ [x].

Proposition 3.5. Let (X,OX) be a topological space, and let ∼ be an equivalence
relation on X. Then

OX/∼ ··= {U ∈ X/ ∼| π−1(U) ∈ OX}

defines a topology on X/ ∼.

Proof. Exercise.

Terminology 3.6. Let (X,OX) be a topological space, and let ∼ be an equivalence
relation on X. We refer to OX/∼ as the quotient topology upon X/ ∼.

Observation 3.7. Let (X,OX) be a topological space, and let ∼ be an equivalence
relation on X. Let X/ ∼ be equipped with the quotient topology. Then

X X/ ∼π

is continuous. Indeed, OX/∼ is defined exactly so as to ensure this.

Notation 3.8. In Examples 3.9 we will adopt the following notation. Let X be a set,
and let ≈ be a transitive relation on X. We denote by ∼ the equivalence relation on X
defined by

x ∼ x′ ⇔

{
x ≈ x′ or x′ ≈ x or x = x′ if x, x′ ∈ X ′,
x = x′ otherwise.

We refer to ∼ as the equivalence relation on X which is generated by ≈.

Examples 3.9.

(1) Define ≈ on I by 0 ≈ 1.

0 1

Then I/ ∼ is obtained by glueing 0 to 1.

0 = 1
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Let us explore subsets U of I/ ∼ which belong to OI/∼. Let U ⊂ I/ ∼ be as
depicted below, and suppose that [0] = [1] 6∈ U .

(

)

U

Then π−1(U) is an open interval in I, and thus U ∈ OI/∼.

( )

π−1(U)

0 1

Suppose now that [0] = [1] ∈ U .

( )
U

Then π−1(U) is a disjoint union of subsets of I which belong to OI , and thus
U ∈ OI/∼.

[ ) ( ]

0 1

Do not be misled by this into thinking that subsets of I/ ∼ belonging to are
exactly images under π of subsets of I belonging to OI . Indeed, suppose that U is
as depicted below.

[
)

U
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This is the image under π of a half open interval as depicted below, which belongs
to OI .

[ )

0 1

Then π−1(U) is the disjoint union of the half open interval depicted above with
the singleton set {1}. Thus π−1(U) 6∈ OI .

[ )

0 1

We see that I/ ∼ looks like the circle S1, which we equipped with a topology
OS1 in a different way in Examples 1.38 (6). Moreover, the subsets of I/ ∼ which
belong to OI/∼ seem very similar to the subsets of S1 which belong to OS1 .

Question 3.10. Are (I/ ∼,OI/∼) and (S1,OS1) the same topological space, in an
appropriate sense?

Answer 3.11. Yes! The appropriate notion of sameness for topological spaces will be
defined at the end of this lecture. In a later lecture we will prove that (I/ ∼,OI/∼) and
(S1,OS1) are the same in this sense.

(2) Define ≈ on I2 by (x, 1) ≈ (x, 0) for all x ∈ [0, 1].

(0, 0) (1, 0)

(0, 1) (1, 1)

Then I/ ∼ is obtained by glueing the upper horizontal edge of I2 to the lower
horizontal edge.

(0, 0) = (0, 1) (1, 0) = (1, 1)
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In a later lecture we will see a way to prove that (I2/ ∼,OI2/∼) is the same, in the
appropriate sense, to the cylinder (S1× I,OS1×I) which was defined in a different
way in Examples 1.38 (9).

(3) Define ≈ on I2 by {
(x, 1) ≈ (x, 0) for all x ∈ [0, 1],

(1, y) ≈ (0, y) for all y ∈ [0, 1].

Then I2/ ∼ is obtained by glueing together the two horizontal edges of I2 and
glueing together the two vertical edges of I2.

We may picture I2/ ∼ as follows.

Indeed we may for example first glue the horizontal edges together as in (2), ob-
taining a cylinder.

We then glue the two red circles together.

We refer to (I2/ ∼,OI2/∼) as the torus, and denote it by T 2.
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(4) Define ≈ on I2 by (x, 1) ≈ (1 − x, 0) for all x ∈ [0, 1]. Then I2/ ∼ is obtained
by glueing together the two horizontal edges of I2 with a twist, indicated by the
arrows in the picture below.

We may picture I2/ ∼ as follows.

In this picture, the glued horizontal edges of I2 can be thought of as a line in
I2/ ∼.

We refer to (I2/ ∼,OI2/∼) as the Möbius band, and denote it by M2.

(5) Define ≈ on I2 by {
(x, 1) ≈ (1− x, 0) for all x ∈ [0, 1],

(1, y) ≈ (0, y) for all y ∈ [0, 1].

Then I2/ ∼ is obtained by glueing together the two vertical edges of I2 and glueing
together the two horizontal edges of I2 with a twist.
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We refer to (I2/ ∼,OI2/∼) as the Klein bottle, and denote it by K2.

We cannot truly picture K2 in R3. Nevertheless we can gain an intuitive feeling
for K2 through a picture as follows.

Indeed we may for example first glue the vertical edges to obtain a cylinder.

We then bend this cylinder so that the directions of the arrows on the circles at
its ends match up.

Next we push the cylinder through itself.
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It is this step that is not possible in a true picture of K2. It can be thought of as
the glueing of two circles: a cross-section of the cylinder, and a circle on the side
of the cylinder.

This is not specified by ∼. The circle obtained after glueing these two circles is
indicated below.

Next we fold back one of the ends of the cylinder, giving a ‘mushroom with a
hollow stalk’.
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Finally we glue the ends of the cylinder together, as specified by ∼.

A rite of passage when learning about topology for the first time is to be confronted
with the following limerick — I’m sure that I remember Colin Rourke enunciating
it during the lecture in which I first met the Klein bottle!

A mathematician named Klein
Thought the Möbius band was divine.
Said he: “If you glue
The edges of two,
You’ll get a weird bottle like mine!”

We will investigate the meaning of this in Exercise Sheet 4!

Colin Rourke also had a glass model of the topological space depicted above —
I’m sorry that I could not match up to this!

(6) Define ≈ on D2 by (x, y) ≈ (0, 1) for all (x, y) ∈ S1.

(0, 1)
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Then D2/ ∼ can be depicted as a hollow ball, as follows.

(0, 1)

We think of D2/ ∼ as obtained by ‘contracting the boundary of D2 to the point
(0, 1)’. For instance, think of the boundary circle of D2 as a loop of fishing line,
and suppose that we have a reel at the point (0, 1). Then D2/ ∼ is obtained by
reeling in tight all of our fishing line.

(0, 1)

(0, 1)

(0, 1)
(0, 1)

We refer to (D2/ ∼,OD2/∼) as the 2-sphere, and denote it by S2. It can be proven
that (S2,OS2) is the same — in the appropriate sense, which we are about to
introduce — as

{x ∈ R3 | ‖x‖ = 1}

equipped with the subspace topology with respect to (R3,OR×R×R).

� We could choose any single point on S1 instead of (0, 1) in the definition of ≈.

3.3 Homeomorphisms

Notation 3.12. Let X be a set. We denote by idX the identity map

X X,

namely the map given by x 7→ x.

Recollection 3.13. The following definitions of a bijective map

X Y
f

are equivalent.
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(1) There is a map

Y X
g

such that g ◦ f = idX and f ◦ g = idY .

(2) The map f is both injective and surjective.

We leave (1)⇒ (2) as an exercise. For (2)⇒ (1), observe that if f is both injective and
surjective, then x 7→ f−1(x) gives a well-defined map

Y X.

with the required properties.

Definition 3.14. Let (X,OX) and (Y,OY ) be topological spaces. A map

X Y
f

is a homeomorphism if:

(1) f is continuous,

(2) there is a continuous map

Y X
g

such that g ◦ f = idX and f ◦ g = idY .

Proposition 3.15. Let (X,OX) and (Y,OY ) be topological spaces. A map

X Y
f

is a homeomorphism if and only if:

(1) f is bijective,

(2) for every U ⊂ X, we have that f(U) ∈ OY if and only if U ∈ OX .

Proof. Exercise.
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