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6 Thursday 31st January

6.1 Connected topological spaces — equivalent conditions, an example,
and two non-examples

Observation 6.1. Both X and Y are open in (X UY, Ox.y). Indeed, i, (X UY) = X,
and X € Ox. Similarly, i;l(X UY)=Y,and Y € Oy.

Moreover, (X UY)\ X =Y. Thus, since Y is open in (X UY, Oxyy), we have that
X is closed in X UY. Similarly, (X UY)\Y = X. Since X is open in (X UY, Ox.y),
we have that Y is closed in X UY.

Putting everything together, we have that X and Y are each both open and closed in
(X Uy, OXUy).

Definition 6.2. A space (X,Ox) is connected if there do not exist Xy, X; C X such
that the following all hold.

(1) X = XoU X;.
(2) Xy € Ox, and X()?é(b
(3) X; € Ox, and X, 7é @

Proposition 6.3. Let (X, Ox) be a topological space. Then X is connected if and only
if the only subsets of X which are both open and closed in (X, Ox) are () and X.

Proof. Suppose that there exists a subset A of X which is both open and closed. Then
A and X \ A are both open in X, and also X = AU (X \ A). If X is connected, A must
therefore be () or X.

Suppose now that the only subsets of X which are both open and closed are () and X,
and that X = AU A’, with both A and A’ open. Then since X \ A = A’, X \ A is open
in X, and thus A is closed in X. Thus A is ) or X. Hence X is connected. O

Observation 6.4. Let X be a set, and let A and A’ be subsets of X. Then X = AU A’
if and only if the following conditions are satisfied.

(1) X=AUA
(2) AnA =0.

Proposition 6.5. Let {0, 1} be equipped with the discrete topology O?és‘i}. A topologi-
cal space (X, Ox) is connected if and only if there does not exist a surjective continuous
map

X —— {0,1}.
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Proof. Suppose that there exists a surjective continuous map

X L> {0,1}.

We make the following observations.

(1) £71(0) and f~1(1) are both open in X, since f is continuous and {0} and {1} both

belong to O?(iﬁ} .

0) and f~!(1) are both non-empty in X, since f is surjective.

(2) f7(
(3) O U1 =f1({o,1}) = X.
@) ffo)nf 1) ={zrec X | f(x) =0and f(z) = 1} = 0, since f is a well-defined

map.

By (3) and (4) and Observation X = f~Y0)u f~(1). Thus, by (1) and (2), X is
not connected.

Suppose now that X is not connected. Thus we have X = A1l A’ for a pair of open
subsets A and A’ of X. Define

f
X ——{0,1}
by
x—0 ifzeA,
x—1 ifxeA.
Then f~1(0) = A and f~1(1) = A, and thus f is continuous. O

Examples 6.6.

(1) Let X = {a,b} be a set with two elements, and let O := {0, {b}, X}. In other
words, (X, Q) is the Sierpinski interval. Then (X, Q) is connected, since the only
way to express X as a disjoint union is X = {a} U {b}, but {a} € O.

(2) Take X ={a,b,c,d,e}. Let O be the topology
{0.{a},{a,b},{c,d},{a,c,d},{c.d, e}, {a,b,c.d} {a,c,d e}, X}

on X. Then (X, O) is not connected, since X = {a,b}U{c,d, e}, and we have that
both {a,b} and {c,d, e} belong to O.

(3) Equip Q with the subspace topology Og with respect to (R, Or) is not connected.
Indeed, pick any irrational z € R, such as z = /2. Then

Q= (QN(=00,2)) U (QN (z,00)),

and since both (—oo,x) and (x,00) belong to (R,Or), we have that both Q N
(—o0,x) and QN (x, 00) belong to Og.
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6.2 Connectedness of (R, Og)

Lemma 6.7. Let A be a subset of R which is bounded below. Let b denote the greatest
lower bound of A, which exists by the completeness of R, as expressed in Theorem [I.10}
Then b € A, and for every x € A, we have that b < x. Here A is the closure of A with
respect to (R, Og).

Proof. Let U be a neighbourhood of b in (R, Or). By definition of Og, U is a union of
open intervals in R. One of these open intervals must contain b. Let us denote it by
(x,2"). There exists b’ € A such that b < b < 2/, since otherwise 2/ would be a lower
bound of A with the property that 2 > b. We thus have that V' € (z,2), and since
(xz,2") C U, we deduce that b’ € U.

We have now shown that ¥ € ANU. We conclude that b is a limit point of A in R,
and thus that b € A.

Suppose now that a € A. If a < b, let € :== b—a. Since € > 0, we have that (a—e,a+¢)
is a neighbourhood of a in R. Since a is a limit point of A in R, we deduce that there
exists @’ € R with @’ € AN (a —€,a+ ¢€). But then ¢’ < a+ ¢, and since a + € = b, we
have that @’ < b. Together with the fact that o’ € A, this contradicts our assumption
that b is a lower bound of A.

We therefore have that a > b, as required.

O

Example 6.8. For a prototypical illustration of Lemma let A denote the open
interval (0,1).

0 1
Then 0 is the greatest lower bound of A, and A = [0, 1].
Proposition 6.9. The topological space (R, Og) is connected.

Proof. Suppose that there exists a subset U of R which is both open and closed in
(R, Or), and such that U # R and U # 0. Let z € R\ U. Since U # (), either
UN[z,00) # 0 or UN (—oo,z] # 0. Suppose that U N [x,00) # 0, and let us denote
UNz,00) by A. Then

R\A=R\ (Uﬂ [a:,oo))
= (R\U)U(R\ [z,00))
=R\ U)U (—o0,z).
Since U is closed in R, R\ U is open in R. Also, (—oo,z) is open in R. Thus R\ A is
open in R, and hence A is closed in R.

In addition, since z ¢ U, we have that A = U N (z,00). Since U is open in (R, Og),
and since (x,00) is also open in (R, Ogr), we have that A is open in (R, Og).
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By definition of A, x is a lower bound of A. Thus, by the completeness of R as
expressed in Theorem A admits a greatest lower bound. Let us denote it by b € R.
Since A is closed in R, by Lemma and Proposition we have that b € A, and that
for every a € A, b < a.

But since A is open in R, it is a union of open intervals in R, one of which must
contain b. Let us denote it by (a’,a”). Then a’ < b, which since a’ € A contradicts that
b<aforallacA.

The proof in the case that U N (—oo, x| # 0 is entirely analogous. O
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