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6 Thursday 31st January

6.1 Connected topological spaces — equivalent conditions, an example,
and two non-examples

Observation 6.1. Both X and Y are open in (X tY,OXtY ). Indeed, i−1X (X tY ) = X,
and X ∈ OX . Similarly, i−1Y (X t Y ) = Y , and Y ∈ OY .

Moreover, (X t Y ) \X = Y . Thus, since Y is open in (X t Y,OXtY ), we have that
X is closed in X t Y . Similarly, (X t Y ) \ Y = X. Since X is open in (X t Y,OXtY ),
we have that Y is closed in X t Y .

Putting everything together, we have that X and Y are each both open and closed in
(X t Y,OXtY ).

Definition 6.2. A space (X,OX) is connected if there do not exist X0, X1 ⊂ X such
that the following all hold.

(1) X = X0 tX1.

(2) X0 ∈ OX , and X0 6= ∅.

(3) X1 ∈ OX , and X1 6= ∅.

Proposition 6.3. Let (X,OX) be a topological space. Then X is connected if and only
if the only subsets of X which are both open and closed in (X,OX) are ∅ and X.

Proof. Suppose that there exists a subset A of X which is both open and closed. Then
A and X \A are both open in X, and also X = At (X \A). If X is connected, A must
therefore be ∅ or X.

Suppose now that the only subsets of X which are both open and closed are ∅ and X,
and that X = A tA′, with both A and A′ open. Then since X \A = A′, X \A is open
in X, and thus A is closed in X. Thus A is ∅ or X. Hence X is connected.

Observation 6.4. Let X be a set, and let A and A′ be subsets of X. Then X = AtA′
if and only if the following conditions are satisfied.

(1) X = A ∪A′.

(2) A ∩A′ = ∅.

Proposition 6.5. Let {0, 1} be equipped with the discrete topology Odisc
{0,1}. A topologi-

cal space (X,OX) is connected if and only if there does not exist a surjective continuous
map

X {0, 1}.

58



Proof. Suppose that there exists a surjective continuous map

X {0, 1}.
f

We make the following observations.

(1) f−1(0) and f−1(1) are both open in X, since f is continuous and {0} and {1} both
belong to Odisc

{0,1}.

(2) f−1(0) and f−1(1) are both non-empty in X, since f is surjective.

(3) f−1(0) ∪ f−1(1) = f−1({0, 1}) = X.

(4) f−1(0) ∩ f−1(1) = {x ∈ X | f(x) = 0 and f(x) = 1} = ∅, since f is a well-defined
map.

By (3) and (4) and Observation 6.4, X = f−1(0)t f−1(1). Thus, by (1) and (2), X is
not connected.

Suppose now that X is not connected. Thus we have X = A t A′ for a pair of open
subsets A and A′ of X. Define

X {0, 1}
f

by {
x 7→ 0 if x ∈ A,

x 7→ 1 if x ∈ A′.

Then f−1(0) = A and f−1(1) = A′, and thus f is continuous.

Examples 6.6.

(1) Let X = {a, b} be a set with two elements, and let O ··= {∅, {b}, X}. In other
words, (X,O) is the Sierpiński interval. Then (X,O) is connected, since the only
way to express X as a disjoint union is X = {a} t {b}, but {a} 6∈ O.

(2) Take X = {a, b, c, d, e}. Let O be the topology

{∅, {a}, {a, b}, {c, d}, {a, c, d}, {c, d, e}, {a, b, c, d}, {a, c, d, e}, X}

on X. Then (X,O) is not connected, since X = {a, b}t{c, d, e}, and we have that
both {a, b} and {c, d, e} belong to O.

(3) Equip Q with the subspace topology OQ with respect to (R,OR) is not connected.
Indeed, pick any irrational x ∈ R, such as x =

√
2. Then

Q =
(
Q ∩ (−∞, x)

)
t
(
Q ∩ (x,∞)

)
,

and since both (−∞, x) and (x,∞) belong to (R,OR), we have that both Q ∩
(−∞, x) and Q ∩ (x,∞) belong to OQ.
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6.2 Connectedness of (R,OR)

Lemma 6.7. Let A be a subset of R which is bounded below. Let b denote the greatest
lower bound of A, which exists by the completeness of R, as expressed in Theorem 1.10.
Then b ∈ A, and for every x ∈ A, we have that b < x. Here A is the closure of A with
respect to (R,OR).

Proof. Let U be a neighbourhood of b in (R,OR). By definition of OR, U is a union of
open intervals in R. One of these open intervals must contain b. Let us denote it by
(x, x′). There exists b′ ∈ A such that b ≤ b′ < x′, since otherwise x′ would be a lower
bound of A with the property that x′ > b. We thus have that b′ ∈ (x, x′), and since
(x, x′) ⊂ U , we deduce that b′ ∈ U .

We have now shown that b′ ∈ A ∩ U . We conclude that b is a limit point of A in R,
and thus that b ∈ A.

Suppose now that a ∈ A. If a < b, let ε ··= b−a. Since ε > 0, we have that (a−ε, a+ε)
is a neighbourhood of a in R. Since a is a limit point of A in R, we deduce that there
exists a′ ∈ R with a′ ∈ A ∩ (a − ε, a + ε). But then a′ < a + ε, and since a + ε = b, we
have that a′ < b. Together with the fact that a′ ∈ A, this contradicts our assumption
that b is a lower bound of A.

We therefore have that a ≥ b, as required.

Example 6.8. For a prototypical illustration of Lemma 6.7, let A denote the open
interval (0, 1).

0 1

Then 0 is the greatest lower bound of A, and A = [0, 1].

Proposition 6.9. The topological space (R,OR) is connected.

Proof. Suppose that there exists a subset U of R which is both open and closed in
(R,OR), and such that U 6= R and U 6= ∅. Let x ∈ R \ U . Since U 6= ∅, either
U ∩ [x,∞) 6= ∅ or U ∩ (−∞, x] 6= ∅. Suppose that U ∩ [x,∞) 6= ∅, and let us denote
U ∩ [x,∞) by A. Then

R \A = R \
(
U ∩ [x,∞)

)
=
(
R \ U

)
∪
(
R \ [x,∞)

)
= (R \ U) ∪ (−∞, x).

Since U is closed in R, R \ U is open in R. Also, (−∞, x) is open in R. Thus R \ A is
open in R, and hence A is closed in R.

In addition, since x 6∈ U , we have that A = U ∩ (x,∞). Since U is open in (R,OR),
and since (x,∞) is also open in (R,OR), we have that A is open in (R,OR).
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By definition of A, x is a lower bound of A. Thus, by the completeness of R as
expressed in Theorem 1.10, A admits a greatest lower bound. Let us denote it by b ∈ R.
Since A is closed in R, by Lemma 6.7 and Proposition 5.7, we have that b ∈ A, and that
for every a ∈ A, b ≤ a.

But since A is open in R, it is a union of open intervals in R, one of which must
contain b. Let us denote it by (a′, a′′). Then a′ < b, which since a′ ∈ A contradicts that
b ≤ a for all a ∈ A.

The proof in the case that U ∩ (−∞, x] 6= ∅ is entirely analogous.
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