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7 Tuesday 5th February

7.1 Characterisation of connected subspaces of (R,OR)

Proposition 7.1. Let (X,OX) and (Y,OY ) be topological spaces, and let

X Y
f

be a continuous map. Suppose that (X,OX) is connected. Let f(X) be equipped with
the subspace topology Of(X) with respect to (Y,OY ). Then

(
f(X),Of(X)

)
is connected.

Proof. Suppose that f(X) = U0 t U1, and that U0 and U1 are open in f(X). By
definition, U0 = f(X) ∩ Y0 for an open subset Y0 of Y , and U1 = f(X) ∩ Y1 for an open
subset Y1 of Y . We make the following observations.

(1) Since f is continuous, f−1(Y0) is open in X. We have that

f−1(U0) = f−1
(
f(X) ∩ Y0

)
= f−1

(
f(X)

)
∩ f−1(Y0)

= X ∩ f−1(Y0)
= f−1(Y0).

Thus f−1(U0) is open in X.

(2) By an analogous argument, f−1(U1) is open in X.

(3) We have that f−1(U0) ∩ f−1(U1) = f−1(U0 ∩ U1). Since U0 ∩ U1 = ∅, we deduce
that f−1(U0 ∩ U1) = ∅. Thus f−1(U0) ∩ f−1(U1) = ∅.

(4) We have that f−1(U0)∪f−1(U1) = f−1(U0∪U1). Since U0∪U1 = f(X), and since
f−1

(
f(X)

)
= X, we deduce that f−1(U0) ∪ f−1(U1) = X.

By (3) and (4), we have that X = f−1(U0) t f−1(U1). Thus, by (1), (2), and the fact
that (X,OX) is connected, we must have that either f−1(U0) = X or that f−1(U0) = ∅.
Hence either U0 = f(X) or U0 = ∅.

Remark 7.2. We will sometimes refer to the conclusion of Proposition 7.1 as: ‘the
continuous image of a connected topological space is connected’.

Corollary 7.3. Let (X,OX) and (Y,OY ) be topological spaces, and let

X Y
f

be a homeomorphism. If (X,OX) is connected, then (Y,OY ) is connected.

Proof. By Proposition 3.15 we have that f is surjective, or in other words we have that
f(X) = Y . It follows immediately from Proposition 7.1 that Y is connected.
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Proposition 7.4. Let (X,OX) be a connected topological space, and let A and A′

be subsets of X. Let A be equipped with the subspace topology OA with respect to
(X,OX), and let A′ be equipped with the subspace topology with respect to (X,OX).
Suppose that (A′,OA′) is connected, and that A′ ⊂ A ⊂ A′. Then (A,OA) is connected.

Proof. Suppose that A = U0 t U1, where both U0 and U1 belong to OA. By definition
of OA, we have that U0 = A ∩U ′0 for an open subset U ′0 of X, and that U1 = A ∩U ′1 for
an open subset U ′1 of X.

We have that

(A′ ∩ U0) ∪ (A′ ∩ U1) = A′ ∩ (U0 ∪ U1)

= A′ ∩A
= A′,

where for the final equality we appeal to the fact that A′ ⊂ A.
Moreover, we have that

(A′ ∩ U0) ∩ (A′ ∩ U1) = A′ ∩ (U0 ∩ U1)

= A′ ∩ ∅
= ∅.

Putting the last two observations together, we have that A′ = (A′ ∩ U0) t (A′ ∩ U1).
Moreover, we have that

A′ ∩ U0 = A′ ∩ (A ∩ U ′0)
= (A′ ∩A) ∩ U ′0
= A′ ∩ U ′0,

and that

A′ ∩ U1 = A′ ∩ (A ∩ U ′1)
= (A′ ∩A) ∩ U ′1
= A′ ∩ U ′1.

For the last equality in each case we appeal again to the fact that A′ ⊂ A. By definition
of OA′ , we thus have that A′ ∩U0 = A′ ∩U ′0 and A′ ∩U1 = A′ ∩U ′1 are open in A′. Since
(A′,OA′) is connected, we deduce that either A′ ∩ U0 = ∅ or A′ ∩ U1 = ∅.

Suppose that A′ ∩ U0 = ∅. Since A′ ∩ U0 = A′ ∩ U ′0, we then have that A′ ∩ U ′0 = ∅.
Thus A′ ⊂ X \ U ′0. Since U ′0 is open in X, we have that X \ U ′0 is closed in X. By
Proposition 5.9, we deduce that A′ ⊂ X \ U ′0.

By assumption we have that A ⊂ A′. Thus U0 = A ∩ U ′0 ⊂ A′ ∩ X0 = ∅, so that
U0 = ∅.

An entirely analogous argument gives that if A′ ∩ U1 = ∅, then U1 = ∅. Putting
everything together, we have proven that if A = U0tU1, where both U0 and U1 are open
in (A,OA), then either U0 = ∅ or U1 = ∅. Thus (A,OA) is connected.
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Remark 7.5. We will sometimes refer to Proposition 7.4 as the ‘sandwich proposition’.

Corollary 7.6. Let (X,OX) be a connected topological space, and let A be a subset of
X. Let A be equipped with the subspace topology OA with respect to (X,OX), and let
A be equipped with the subspace topology OA with respect to (X,OX). Suppose that
(A,OA) is connected. Then (A,OA) is connected.

Proof. Follows immediately from Proposition 7.4, taking both A and A′ to be A.

Lemma 7.7. Let (X,O) be a topological space. If X is empty or consists of exactly
one element, then (X,O) is connected.

Proof. If X is empty or consists of exactly one element, the only ways to express X as
a disjoint union of subsets are X = ∅tX and X = X t∅. For X = ∅tX, condition (2)
of Definition 6.2 is not satisfied. For X = X t ∅, condition (3) of Definition 6.2 is not
satisfied.

Lemma 7.8. Let X be a non-empty subset of R. Then X is an open interval, a closed
interval, or a half open interval if and only if for every x, x′ ∈ X and y ∈ R with
x < y < x′ we have that y ∈ X.

Proof. Suppose that X = [a, b], for a, b ∈ R with a ≤ b. If x, x′ ∈ X, then by definition
of [a, b] we have that a ≤ x ≤ b and a ≤ x′ ≤ b. Suppose that x < x′ and that y ∈ R has
the property that x < y < x′. Then we have that a ≤ x < y < x′′ ≤ b, and in particular
a ≤ y ≤ b. Thus, by definition of [a, b], we have that y ∈ [a, b].

If X is an open interval or a half open interval, an entirely analogous argument proves
that if x, x′ ∈ X and y ∈ R have the property that x < y < x′, then y ∈ X.

Conversely, suppose that for every x, x′ ∈ X and y ∈ R with x < y < x′ we have that
y ∈ X. Let a = inf X and let b = supX. As in Lecture 1, if X is not bounded below we
adopt the convention that inf X = −∞, and if X is not bounded above we adopt the
convention that supX =∞.

Suppose that y ∈ X has the property that a < y < b. Since y > a there is an x ∈ X
with x < y, since otherwise y would be a lower bound of X, contradicting the fact that
a is by definition the greatest lower bound of X. Since y < b there is an x′ ∈ X with
y < x′, since otherwise y would be an upper bound of X, contradicting the fact that
b is by definition the least upper bound of X. We have shown that x < y < x′, with
x, x′ ∈ X. By assumption, we deduce that y ∈ X.

We have now shown that for all y ∈ X such that a < y < b, we have that y ∈ X. To
complete the proof, there are four cases to consider.

(1) If a, b ∈ X, we have by definition of [a, b] that X = [a, b].

(2) If a ∈ X and b 6∈ X, we have by definition of [a, b) that X = [a, b).

(3) If a 6∈ X and b ∈ X, we have by definition of (a, b] that X = (a, b].

(4) If a 6∈ X and b 6∈ X, we have by definition of (a, b) that X = (a, b).
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Proposition 7.9. Let X be a subset of R, and let X be equipped with the subspace
topology OX with respect to (R,OR). Then X is connected if and only if X is an open
interval, a closed interval, a half open interval, or ∅.

Proof. If X is not an open interval, a closed interval, a half open interval, or ∅, then by
Lemma 7.8 there are x, x′ ∈ X and y ∈ R \X with x < y < x′. Let U0 ··= X ∩ (−∞, y),
and let U1 ··= X∩(y,∞). By definition of OX , both U0 and U1 are open in X. Moreover,
X = X0 tX1. Thus X is not connected. This completes one direction of the proof.

Conversely, let us prove that if X is an open interval, a closed interval, a half open
interval, or ∅, then X is connected. By Lemma 7.7, if X = ∅ or if X consists of exactly
one element, then X is connected.

Suppose instead that X is an open interval. By Examples 4.7 (2) we have that X
is homeomorphic to R. By Proposition 6.9 and Corollary 7.3, we deduce that X is
connected.

Suppose now that X is either a closed interval or a half open interval, with more than
one element. Let us denote the open interval X \ ∂XR by X ′. We have by earlier in the
proof that X ′ is connected. Moreover we have that X ′ ⊂ X ⊂ X ′. By Proposition 7.4,
we deduce that X is connected.

Corollary 7.10. Let (X,OX) be a connected topological space, and let

X R
f

be a continuous map. Let x and x′ be elements of X with f(x) ≤ f(x′). Then for every
y ∈ R such that f(x) ≤ y ≤ f(x′), there is an x′′ ∈ X such that f(x′′) = y.

Proof. By Proposition 7.1, f(X) is connected. By Proposition 7.9 we deduce that f(X)
is an open interval, a closed interval, or a half open interval. By Lemma 7.8 we conclude
that every y ∈ R such that f(x) ≤ y ≤ f(x′′) belongs to f(X).

Remark 7.11. Taking (X,OX) to be (R,OR), Corollary 7.10 is the ‘intermediate value
theorem’ that you met in real analysis/calculus!

7.2 Examples of connected topological spaces

Lemma 7.12. Let (X,OX) and (Y,OY ) be topological spaces. For every x in X, let
{x}×Y be equipped with the subspace topology O{x}×Y with respect to (X×Y,OX×Y ).
Then ({x} × Y,O{x}×Y ) is homeomorphic to (Y,OY ).

For every y in Y , let X × {y} be equipped with the subspace topology OX×{y} with
respect to (X × Y,OX×Y ). Then (X × {y},OX×{y}) is homeomorphic to (X,OX).

Proof. Exercise.

Proposition 7.13. Let (X,OX) and (Y,OY ) be topological spaces. Then (X×Y,OX×Y )
is connected if and only if both (X,OX) and (Y,OY ) are connected.
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Proof. Suppose that (X,OX) and (Y,OY ) are connected. Let X × Y be equipped with
the product topology OX×Y , and let {0, 1} be equipped with the discrete topology. Let

X × Y {0, 1},
f

be a continuous map.
Let x, x′ ∈ X, and let y, y′ ∈ Y . Let {x}×Y with the subspace topology with respect

to (X × Y,OX×Y ), and let ix denote the inclusion

{x} × Y X × Y.

By Proposition 2.15, ix is continuous. By Proposition 2.16, we deduce that the map

{x} × Y {0, 1}
f ◦ ix

is continuous.
By Lemma 7.12, {x}×Y is homeomorphic to Y . Thus, since Y is connected, Corollary

7.3 implies that {x} × Y is connected.
We now have that f ◦ ix is continuous and {x} × Y is connected. We deduce by

Proposition 6.5 that f ◦ ix cannot be surjective. Since {0, 1} has only two elements, we
conclude that f ◦ ix is constant, and in particular that f(x, y) = f(x, y′).

Let X×{y′} be equipped with the subspace topology with respect to (X×Y,OX×Y ).
Let iy′ denote the inclusion

X × {y′} X × Y.

By Proposition 2.15, iy′ is continuous. Hence, by Proposition 2.16, the map

X × {y′} {0, 1}
f ◦ iy

is continuous.
By Lemma 7.12, X × {y′} is homeomorphic to X. Since X is connected, we deduce

by Corollary 7.3 that X × {y′} is connected.
We now have that f ◦ iy′ is continuous and that X ×{y′} is connected. We deduce by

Proposition 6.5 that f ◦ iy′ cannot be surjective. Since {0, 1} has only two elements, we
conclude that f ◦ iy′ is constant, and in particular that f(x, y′) = f(x′, y′).

Putting everything together, we have that f(x, y) = f(x′, y′). Since x, x′ ∈ X and
y, y′ ∈ Y were arbitrary, we conclude that f is constant. In particular, f is not surjective.

We have proven that there does not exist a continuous surjection

X × Y {0, 1}.

By Proposition 6.5, we conclude that (X × Y,OX×Y ) is connected.
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Conversely, suppose that (X × Y,OX×Y ) is connected. By Proposition 3.2, we have
that the map

X × Y X
pX

is continuous. We have that pX(X × Y ) = X. By Proposition 7.1, we conclude that X
is connected.

Similarly, by Proposition 3.2, the map

X × Y X
pY

is continuous. We have that pY (X × Y ) = Y . By Proposition 7.1, we conclude that Y
is connected.

Examples 7.14.

(1) By Proposition 6.9, we have that (R,OR) is connected. By Proposition 7.13, we
deduce (R2,OR×R) is connected. By Proposition 7.13 and induction, we moreover
have that (Rn,OR× · · · × R︸ ︷︷ ︸

n

) is connected for any n ∈ N.

(2) By Proposition 7.9, I is connected. By Proposition 7.13, we deduce that (I2,OI×I)
is connected. By Proposition 7.13 and induction, we moreover have that

(In,OI × · · · × I︸ ︷︷ ︸)
is connected for any n ∈ N.

Proposition 7.15. Let (X,OX) be a connected topological space, and let ∼ be an
equivalence relation on X. Then (X/ ∼,OX/∼) is connected.

Proof. Let

X X/ ∼π

denote the quotient map. By Proposition 3.7, we have that π is continuous. Moreover
π is surjective, namely π(X) = X/ ∼. By Proposition 7.1, we deduce that X/ ∼ is
connected.

Example 7.16. All the topological spaces of Examples 3.9 (1) – (5) are connected.
Indeed, by Examples 7.14 (2) we have that I and I2 are connected. Thus, by Proposition
7.15, a quotient of I or I2 is connected.

On Exercise Sheet 4 we will prove that D2 ∼= I2. Since I2 is connected by Examples
7.14 (2), we deduce by Corollary 7.3 that D2 is connected. By Proposition 7.15, we
conclude that S2, constructed as a quotient of D2 as in Examples 3.9 (6), is connected.
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