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9 Tuesday 12th February

9.1 Using connectedness to distinguish between topological spaces —- II,
continued

Examples 9.1.

(1) Let us regard the letter K as a subset of R2, equipped with its subspace topology
OK with respect to (R2,OR2).

Let (T,OT) be as in Examples 8.16 (1). Let us prove that (K,OK) is not homeo-
morphic to (T,OT). Let x be the point of K indicated below.

Then K \ {x} equipped with the subspace topology with respect to (K,OK) has
four connected components.

However, the topological space obtained by removing a point from (T,OT) and
equipping the resulting set with the subspace topology with respect to (T,OT) has
at most three connected components.

We deduce by Proposition 8.14 that K\{x} is not homeomorphic to T\{y} for any
y ∈ T. We conclude that (K,OK) is not homeomorphic to (T,OT) by Proposition
8.1.
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(2) Let us regard the letter Ø as a subset of R2, equipped with its subspace topology
OØ with respect to (R2,OR2).

Let I and OI be as in Examples 8.16 (1). We cannot distinguish (Ø,OØ) from
(I,OI) by remvoing one point from Ø.

Let us see why. Removing one point from Ø and equipping the resulting set with
the subspace topology with respect to (Ø,OØ) we obtain a topological space with
either one or two connected components.

For instance, we obtain one connected component by removing a point as shown
below.

We obtain two connected components by removing a point as shown below, for
example.

Since we may also obtain a topological space with either one or two connected
components by removing a point from (I,OI), we cannot conclude that (Ø,OØ) is
not homeomorphic to (I,OI).

However, let x and y be the two points of Ø indicated below.

77



Then Ø \ {x, y} equipped with the subspace topology with respect to (Ø,OØ) has
five connected components.

Removing two points from I and equipping the resulting set with the subspace
topology with respect to (I,OI) gives a topological space with at most three con-
nected components.

We deduce by Proposition 8.14 that Ø \ {x, y} is not homeomorphic to I \ {x′, y′}
for any x′, y′ ∈ I. We conclude that (Ø,OØ) is not homeomorphic to (I,OI) by
Proposition 8.1.

Lemma 9.2. For any n > 1 and any x ∈ Rn we have that Rn \ {x} equipped with the
subspace topology ORn\{x} with respect to (Rn,ORn) is connected.

Proof. Let y, y′ ∈ Rn \ {x}. Since n > 1, there exists a line L through y and a line L′

through y′ such that L ⊂ Rn \ {x} L′ ⊂ Rn \ {x}, and L ∩ L′ 6= ∅. For instance, let y′′

denote the point x + (0, . . . , 0, 1) of Rn. We can take L to be

{y + ty′′ | t ∈ [0, 1]}

equipped with the subspace topology OL with respect to (Rn,ORn), and take L′ to be

{y′ + ty′′ | t ∈ [0, 1]}

equipped with the subspace topology with respect to (Rn,ORn).
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Since (L,OL) is homeomorphic to (I,OI), and since (I,OI) is connected by Proposition
7.9, we deduce by Corollary 7.3 that (L,OL) is connected. By exactly the same argument,
we also have that (L′,OL′) is connected. We deduce by Proposition 8.5 that L ∪ L′ is
connected.

Thus y and y′ belong to the same connected component of (Rn \ {x},ORn\{x}). Since
y and y′ were arbitrary, we deduce that this connected component is Rn \ {x} itself. We
conclude by Corollary 8.6 that (Rn \ {x},ORn\{x}) is connected.

Proposition 9.3. The topological space (R,OR) is not homeomorphic to (Rn,ORn) for
any n > 1.

Proof. Let n > 1, and suppose that

R Rn
f

defines a homeomorphism between (R,OR) and (Rn,ORn). Let x ∈ R. By Lemma 9.2
we have that (Rn \ {f(x)},ORn\{f(x)}) is connected.

But (R \ {x},OR\{x}) is not connected.

x

By Proposition 8.1 and Corollary 7.3 we conclude that (R,OR) is not homeomorphic to
(Rn,ORn).

Question 9.4. In all our examples of distinguishing topological spaces by means of
connectedness at least one of the topological spaces has been ‘one dimensional’, built
out of lines and circles. Can we apply our technique to distinguish between higher
dimensional topological spaces?

Remark 9.5. For example, let us try to formulate an argument to distinguish T 2 from
S2. Let X denote the circle on T 2 depicted below.
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Then T 2 \X is as depicted below.

Equipped with the subspace topology with respect to (T 2,OT 2), it is homeomorphic to
a cylinder.

In particular, T 2 \X is connected.
Let us now consider a subset Y of S2 which, equipped with the subspace topology

with respect to (S2,OS2), is homeomorphic to a circle.

Then S2 \ Y intuitively appears to have two connected components: the interior of Y
and S2 \ Y .

If our intuition is correct, by Proposition 8.14 we deduce that T 2\X is not homeomorphic
to S2 \ Y for any subset Y of S2 which, equipped with the subspace topology with
respect to (S2,OS2), is homeomorphic to (S1,OS1). We conclude that (T 2,OT 2) is not
homeomorphic to (S2,OS2) by Proposition 8.1.

� We have to be very careful! Homeomorphism is a very flexible notion, and Y could
be very wild, much more complicated than the circle on S2 drawn above.

80



We need to be sure that the requirement that we have a homeomorphism, as opposed
to only a continuous surjection, excludes examples which are as wild as the Peano curve
that we will meet on a later Exercise Sheet.

In other words, in order to carry out the argument of Remark 9.5 we have to rigorously
prove that S2 \ Y has two connected components for any possible Y . This is subtle!

Answer 9.6. Nevertheless, it is true! This is known as the Jordan curve theorem, which
we will prove towards the end of the course. Thus the argument of Remark 9.5 does
after further work prove that (T 2,OT 2) is not homeomorphic to (S2,OS2).

Towards the end of the course we will also be able to prove by our technique, using
a generalisation of the Jordan curve theorem to higher dimensions, that Rm is not
homeomorphic to Rn for any m,n > 0.

More sophisticated tools, which you will meet if you take Algebraic Topology I in the
future, give a simple — after some foundational work! — proof of the Jordan curve
theorem and its generalisation to higher dimensions.

Example 9.7. Whilst we do not yet have the tools to explore very wild phenomena such
as the Peano curve that we will meet on a later Exercise Sheet, let us give an example
of the kind of wildness that topology allows.

We will construct a pair of spaces (X,OX) and (Y,OY ) such that there exists a
continuous bijection from X to Y and a continuous bijection from Y to X, but such
that X is not homeomorphic to Y .

Let us define
X = (0, 1) ∪ {2} ∪ (3, 4) ∪ {5} ∪ (6, 7) ∪ {8} · · · .

In other words
X =

⋃
n∈Z, n≥0

(3n, 3n + 1) ∪ {3n + 2}.

Here as usual (3n, 3n + 1) denotes the open interval from 3n to 3n + 1 in R. We equip
X with the subspace topology OX with respect to (R,OR).

Let us define
Y = (0, 1] ∪ (3, 4) ∪ {5} ∪ (6, 7) ∪ {8} ∪ · · · .

In other words,

Y = (0, 1] ∪
( ⋃

n∈Z, n≥1
(3n, 3n + 1) ∪ {3n + 2}

)
.

We equip Y with the subspace topology OY with respect to (R,OR).
We have that (0, 1] is a connected component of Y . By Corollary 8.2, (0, 1] is not

homeomorphic to an open or closed interval. We deduce by Observation 8.15 that X is
not homeomorphic to Y .

Let

X Y
f
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be given by

f(x) =

{
x if x 6= 2,

1 x = 2.

Let

Y X
g

be given by

g(x) =


x
2 if x ∈ (0, 1],
x−2
2 x ∈ (3, 4),

x− 3 otherwise.

Then both f and g are continuous, by Question 3 (f) of Exercise Sheet 3 and Question
1 of Exercise Sheet 5. Morever, f and g are bijective.

� Do not be confused — the bijections f and g are not inverse to one another! If
they were, we would have that X is homeomorphic to Y .

9.2 Locally connected topological spaces

Proposition 9.8. Let (X,O) be a topological space. Given x ∈ X, let Ax denote the
connected component of x in X. Then Ax is a closed subset of X.

Proof. By Corollary 8.6, Ax is a connected subset of X. We deduce by Corollary 7.6
that Ax is a connected subset of X. Hence by definition of Ax we have that Ax ⊂ Ax.
Since Ax ⊂ Ax, we deduce that Ax = Ax. We conclude by Proposition 5.7 that Ax is
closed.

Remark 9.9. By Examples 8.10 (4) a connected component need not be open.

Definition 9.10. A topological space (X,O) is locally connected if for every x ∈ X and
every neighbourhood U of x in (X,OX) there is a neighbourhood U ′ of x in (X,OX)
such that U ′ is a connected subset of X and U ′ ⊂ U .

Proposition 9.11. A topological space (X,OX) is locally connected if and only if it
admits a basis consisting of connected subsets.

Proof. This is an immediate consequence of Question 3 (a) and Question 3 (b) on Ex-
ercise Sheet 2.

Lemma 9.12. Let (X,OX) be a topological space, let x ∈ X, and let U be a neighbour-
hood of x in (X,OX). Equip U with its subspace topology OU with respect to (X,OX).
Let A be a connected subset of X with A ⊂ U . Then A is a connected subset of (U,OU ).

Proof. See Exercise Sheet 5.
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Proposition 9.13. A topological space (X,O) is locally connected if and only if for
every open subset U of X the connected components of (U,OU ) are open subsets of X,
where OU denotes the subspace topology on U with respect to (X,OX).

Proof. Suppose that (X,O) is locally connected. Let U be an open subset of X, equipped
with the subspace topology OU with respect to (X,OX). Let x ∈ U , and for any y ∈ U ,
let Ay denote the connected component of y in (U,OU ). We have that Ay = Ax for all
y ∈ Ax.

By Proposition 9.11, (X,O) admits a basis {Uj}j∈J such that Uj is a connected subset
of (X,OX) for every j ∈ J . Thus by Question 3 (a) of Exercise Sheet 2, there is a j ∈ J
such that y ∈ Uj and Uj ⊂ U . Since Uj is a connected subset of (X,OX), we deduce
by Lemma 9.12 that Uj is a connected subset of (U,OU ). Hence Uj ⊂ Ay = Ax. By
Question 3 (b) of Exercise Sheet 2, we conclude that Ax is an open subset of X.

Conversely, suppose that for every open subset U of X the connected components
of (U,OU ) are open subsets of X, where OU denotes the subspace topology on U with
respect to (X,OX). For x ∈ U , let AU

x denote the connected component of x in U .
Then {AU

x }U∈O, x∈U defines a basis for (X,O). Indeed, for any U ∈ O we have by
Proposition 8.9 that U =

⋃
x∈U AU

x .

Examples 9.14.

(1) (R,OR) is locally connected. Indeed by definition of OR we have that

{(a, b) | a, b ∈ R}

is a basis for (R,OR). By Proposition 7.9, (a, b) is a connected subset of R for
every a, b ∈ R.

(2) Products and quotients of locally connected topological spaces are locally con-
nected. We will prove this on the Exercise Sheet 5. We deduce that all of the
topological spaces of Examples 1.38 and Examples 3.9 are locally connected.

(3) The subset X = (0, 1) t (2, 3) of R equipped with the subspace topology with
respect to (R,OR) is locally connected, since (0, 1) and (2, 3) are connected by
Proposition 7.9. However X is evidently not connected.

(4) By Examples 8.10 (4), Q equipped with its subspace topology OQ with respect to
(R,OR) is not locally connected, since its connected components are the singleton
sets {q}q∈Q, which are not open in (Q,OQ).
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