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Guide

The topic of the questions on this exercise sheet is that of a basis, or more generally a
sub-basis, of a topological space.

(1) The two facts which are asked to be proven in Question 3 are important, and are
used in later questions. They will give you practise in working with a basis for
theoretical purposes.

(2) Question 5 introduces the notion of a sub-basis of a topological space, and will
check your understanding of Proposition 2.2 in Lecture 2.

(3) Questions 1, 2, 4, 6, 7, and 9 will all help you to gain familiarity with bases and
sub-bases in different settings. Question 7 (b) and Question 9 (b) are probably the
most difficult of these, and I encourage you to give them a go.

(4) Question 8 has a somewhat different feel, introducing second-countable topological
spaces. Second-countability is an important technical notion — it crops up, for
example, in the theory of manifolds. Part (b) especially may be quite challenging.

(5) Question 10 continues our investigation of Alexandroff spaces and pre-orders from
Exercise Sheet 1. The question essentially asks to show, making use of our new tool
of a basis, that Alexandroff topologies on a set X correspond exactly to pre-orders
on X, by means of the constructions we became acquainted with on Exercise Sheet
1.

Questions and Solutions

1

Question. Let (X,O) be a topological space. Prove that O′ ··=
{
{x} | x ∈ X

}
is a

basis for (X,O) if and only if O is the discrete topology on X.
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Solution. If O is the discrete topology on X, then {x} ∈ O for every x ∈ X. Moreover
every subset of X may be obtained as a union of subsets of X belonging to O′. Thus if
O is the discrete topology on X, then O′ is a basis for (X,O).

If O′ is a basis for (X,O), then {x} ∈ O for every x ∈ X. Moreover, O consists exactly
of unions of subsets of X belonging to O′. Since every subset of X may be obtained as
a union of subsets of X belonging to O′, we deduce that every subset of X belongs to
O. Thus if O′ is a basis for (X,O), then O is the discrete topology on X.

2

Question. Let (X,OX) be a topological space, and let O′X be a basis for (X,OX). Let
A be a subset of X, and let OA denote the subspace topology upon A. Prove that

O′A ··=
{
A ∩ U ′ | U ′ ∈ O′X

}
defines a basis for (A,OA).

Solution. Since U ′ ∈ OX for every U ′ ∈ O′, we have that A ∩ U ′ ∈ OA. Let U be a
subset of A which belongs to OA. By definition of OA, we have that U = A∩U ′, where
U ′ ∈ OX .

Since O′X defines a basis for (X,OX), there is a set J such that U ′ =
⋃

j∈J U
′
j , where

U ′j ∈ O′X for all j ∈ J . We then have that

U = A ∩ U ′

= A ∩
( ⋃

j∈J
U ′j

)
=
⋃
j∈J

A ∩ U ′j .

Thus U can be obtained as a union of subsets of A belonging to O′A, as required.

3

Question.
(a) Let (X,O) be a topological space, and let O′ be a subset of O. Then O′ defines

a basis for O if and only if for every U ⊂ X which belongs to O and every x ∈ U
there is a U ′ ∈ O′ such that x ∈ U ′ and U ′ ⊂ U .

(b) Let (X,O) be a topological space, and let O′ be a basis for (X,O). Then U ⊂ X
belongs to O if and only if for every x ∈ U there is a U ′ ∈ O′ such that x ∈ U ′

and U ′ ⊂ U .

Solution.
(a) Suppose that U ⊂ X belongs to O. If O′ defines a basis for (X,O), then U =⋃

j∈J U
′
j for a set {U ′j}j∈J of subsets of X belonging to O′. By definition of

⋃
j∈J U

′
j ,

for every x ∈ U there is a j ∈ J such that x ∈ U ′j .
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Conversely, suppose that for every x ∈ U there is U ′x ⊂ X such that x ∈ U ′x and
U ′x ⊂ U . Then

⋃
x∈X U ′x ⊂ U . But clearly also U ⊂

⋃
x∈X U ′x. Thus

⋃
x∈X U ′x = U ,

and we have demonstrated that U can be obtained as a union of subsets of X
which belong to O′.

(b) Suppose that U ∈ O. Since O′ is a basis for (X,O), it follows from (a) that if
U ⊂ X belongs to O, then for every x ∈ O′ there is a U ′ ⊂ X such that x ∈ U ′

and U ′ ⊂ U .

Conversely, suppose that for every x ∈ U there is U ′x ∈ O′ such that x ∈ U ′x and
U ′x ⊂ U . Then, as in (a), we have that

⋃
x∈X U ′x = U . Since O′ is a basis for

(X,O), we have that U ′x ∈ O for every x ∈ X. Thus
⋃

x∈X U ′x ∈ O, and we deduce
that U ∈ O.

4

Question.
(a) Let (X,OX) and (Y,OY ) be topological spaces. Prove that

O′ ··= {U × U ′ | U ∈ OX and U ′ ∈ OY }

defines a basis for the product topology OX×Y upon X × Y .

(b) Find a pair of topological spaces (X,OX) and (Y,OY ) for which it is not true that
O′ as defined in (a) itself defines a topology on X × Y . Find a pair of topological
spaces (X,OX) and (Y,OY ) for which it is true.

Solution.
(a) It is clear that U × U ′ ∈ OX×Y for every U ∈ OX and U ′ ∈ OY . Let W ∈ OX×Y .

By definition of OX×Y , for every (x, y) ∈ X×Y there exists Ux ∈ OX and U ′y ∈ OY

such that (x, y) ∈ Ux×U ′y, and Ux×U ′y ⊂W . It follows immediately from Question
3 (a) that O′ defines a basis for (X × Y,OX×Y ).

(b) Almost any example that you try will give a pair of spaces (X,OX) and (Y,OY )
for which O′ does not define a topology on X × Y . The simplest is the following.
Let X = Y = {0, 1}, and let OX = OY =

{
∅, 1, {0, 1}

}
. Then

O′ =
{
∅, {(1, 1)}, {(0, 1), (1, 1)}, {(1, 0), (1, 1)}, X × Y

}
does not define a topology on X × Y , since {(0, 1), (1, 1)} ∪ {(1, 0), (1, 1)} =
{(0, 1), (1, 0), (1, 1)}, which does not belong to O′.
For an example where O′ does define a topology on X ×Y , we may take X and Y
to be any pair of sets, each equipped with the discrete or indiscrete topologies.
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5

Definition. Let (X,O) be a topological space. A sub-basis for (X,O) is a set O′ of
subsets of X belonging to O such that every subset of X belonging to O can be obtained
as a (possibly infinite) union of finite intersections of subsets of X belonging to O′.

Question. Let X be a set, and let O′ be a set of subsets of X. Let O be the set of
subsets of X which can be obtained as a (possibly infinite) union of finite intersections
of subsets of X belonging to O′. Suppose that X ∈ O. Prove that O defines a topology
on X with sub-basis O′.

We refer to O as the topology generated by O′.

Solution. Let us prove that O defines a topology on X.

(1) The empty set can be thought of as an ‘empty union’ of subsets of X belonging to
O′. If you’re not comfortable with this, just include ∅ in the definition of O.

(2) By assumption, X ∈ O.

(3) Let {Uj}j∈J be a set of subsets of X belonging to O. By definition of O, we have
that

Uj =
⋃

k∈Kj

U ′k

for a set {U ′k}k∈Kj
of subsets of X with the property that for every k ∈ Kj we

have that
U ′k =

⋂
r∈Rk

U ′′r

for a finite set {U ′′r }r∈Rk
of subsets of X belonging to O′.

We then have that ⋃
j∈J

Uj =
⋃
j∈J

( ⋃
k∈Kj

U ′k

)
=
⋃
j∈J

( ⋃
k∈Kj

( ⋂
r∈Rk

U ′′r

))
=

⋃
k∈

⋃
j∈J Kj

( ⋂
r∈Rk

U ′′r

)
.

Thus
⋃

j∈J Uj is a union of finite intersections of subsets of X belonging to O′, and
hence

⋃
j∈J Uj belongs to O.

(4) Let U and U ′ be subsets of X which belong to O. By definition of O we have that

U =
⋃
j∈J

U ′j
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for a set {U ′j}j∈J of subsets of X with the property that for every j ∈ J we have
that

U ′j =
⋂

k∈Kj

U ′′k

for a finite set {U ′′k }k∈Kj
of subsets of X belonging to O′.

We also have that
U ′ =

⋃
j′∈J ′

U ′j′

for a set {U ′j′}j′∈J ′ of subsets of X with the property that for every j′ ∈ J ′ we have
that

U ′j′ =
⋂

k′∈K′
j′

U ′′k′

for a finite set {U ′′k′}k′∈K′
j

of subsets of X belonging to O′.

We then have that

U ∩ U ′ =
( ⋃

j∈J
U ′j

)
∩
( ⋃

j′∈J ′

U ′j′
)

=
( ⋃

j∈J

( ⋂
k∈Kj

U ′′k

))
∩
( ⋃

j′∈J ′

( ⋂
k′∈Kj′

U ′′k′
))

=
⋃

(j,j′)∈J×J ′

⋂
(k,k′)∈Kj×Kj′

U ′′k ∩ U ′′k′

Thus U ∩U ′ is a union of finite intersections of subsets of X belonging to O′, and
hence U ∩ U ′ ∈ O.

It is clear that O′ is a sub-basis for (X,O′).

6

Question.
(a) Let X = {a, b, c}, and let O denote the topology{

∅, {a}, {b}, {a, b}, {b, c}, X
}

upon X. Which sets of subsets of X define bases of (X,O)? Find a sub-basis of
(X,OX) which consists of three subsets of X, and to which {a, b} and {b, c} both
belong. Does this sub-basis define a basis?

(b) Let X = {a, b, c, d}. List the subsets of X belonging to the topology O1 on X
generated by O′1 ··=

{
{a}, {d}, {b, d}, {c, d}

}
. Do the same for the topology O2 on

X generated by O′2 ··=
{
{a}, {b, c}, {c, d}

}
.
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� We have two ways to generate a topology on a set X from a set O′ of subsets
of X, namely as in Proposition 2.2 of the lecture notes and as in Question 5.
We can apply Question 5 to an arbitrary O′, but to apply Proposition 2.2 of the
lecture notes to O′, we must have that conditions (1) and (2) of Proposition 2.2
are satisfied.

Note that when both Question 5 and Proposition 2.2 can be applied, we obtain
the same topology in both cases. The key thing is not to try to apply Proposition
2.2 when the required conditions are not satisfied!

Solution.
(a) The bases of (X,OX) are those subsets of X which have

{
{a}, {b}, {b, c}

}
as a

subset.

The set O′ ··=
{
{a}, {a, b}, {b, c}} defines a sub-basis of (X,O) containing {a, b}

and {b, c}. It does not define a basis, since {b} cannot be obtained as a union of
subsets of X belonging to O′.

(b) All non-empty intersections of subsets of X belonging to O′1 belong to O′1. Thus
O1 is obtained by taking unions of subsets of X belonging to O′1, and we have that

O1 =
{
∅, {a}, {d}, {b, d}, {c, d}, {a, d}, {a, b, d}, {a, c, d}, {b, c, d}, X

}
.

Not all non-empty intersections of subsets of X belonging to O′2 belong to O′2. To
obtain O2, we first enlarge O′2 to the set O′′2 which consists of non-empty finite
intersections of subsets of X belonging to O′2. Thus

O′′2 =
{
{a}, {c}, {b, c}, {c, d}

}
.

Then O2 consists of unions of subsets of X belonging to O′′2 , and we have that

O2 =
{
∅, {a}, {c}, {b, c}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}, X

}
.

7

Question.
(a) Let O′ ··= {(a,∞) | a ∈ R} ∪ {(−∞, b) | b ∈ R}. Prove that O′ defines a sub-basis

for the standard topology OR on R.

(b) Let O′ ··= {[a,∞) | a ∈ R} ∪ {(−∞, b) | b ∈ R}. Let O denote the topology on R
generated by O′. Prove that O′′ ··= {[a, b) | a, b ∈ R} defines a basis for (R,O).
Prove that OR ⊂ O. Is it true that O = OR? Prove or disprove it!

Solution.
(a) Let a, b ∈ R. It suffices to check that the open interval (a, b) can be obtained as

a union of intersections of subsets of R belonging to O′. Indeed, we have that
(a, b) = (−∞, b) ∩ (a,∞).
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(b) Let a, b ∈ R. To prove that O′′ is a basis for O it is sufficient to check that:

(1) [a, b) ∈ R for every a, b ∈ R,

(2) both [a,∞) and (−∞, b) can be obtained as a union of subsets of R belonging
to O′′.

For (1), we have that [a, b) = [a,∞) ∩ (−∞, b). For (2), we have for example that
[a,∞) =

⋃
n∈N[a, a + n) and that (−∞, b) =

⋃
n∈N(b− n, b).

To prove that OR ⊂ O, it suffices to check that (a, b) ∈ O for every a, b ∈ R.
Indeed, we have for example that (a, b) =

⋃
n∈N[a + 1

n , b), and by the above we
have that [a + 1

n , b) ∈ O.

It is not true that O = OR. Indeed, [a, b) does not belong to OR for any a, b ∈ R.

For by definition of OR, if [a, b) belonged to OR we would have for some set J
that [a, b) =

⋃
j∈J(aj , bj), where aj , bj ∈ R for all j ∈ J . By definition of [a, b), we

would then have that aj ≥ a for all j ∈ J . But this contradicts that by definition
of
⋃

j∈J(aj , bj) we would also have that a ∈ (aj , bj) for some j ∈ J , and hence that
aj < a.

Remark. The topology O on R is known as the lower limit topology. The topological
space (R,O) is sometimes known as the Sorgenfrey line.

8

Terminology. We will say that a set X is countable if there exists an injection

X N.

Otherwise we say that X is uncountable.

Definition. A topological space (X,O) is second-countable if it admits a basis O′ which
is a countable set.

Remark. In particular, any topological space (X,O) such that X is finite is second-
countable. Indeed, O is then finite, and we may take all of O as a basis for (X,O).

Remark. There is also a notion of a first-countable topological space. We will meet it
later in the course.

Remark. Recall that Z is countable, since there is a bijection

Z N,

given for example by

z 7→

{
2z + 1 if z ≥ 0,

−z if z < 0.

Explicitly, the image of this bijection may be described as: 0, 1,−1, 2,−2, . . ..
Recall also that Q is countable. One way to prove this is as follows.
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(i) There is a bijection

N× N N

given by (n, n′) 7→ 2n3n
′
.

(ii) Since Z is countable, we deduce from (i) that Z× Z is countable.

(iii) Let
P ··=

{
(z, z′) ∈ Z× Z | z 6= 0 and hcf(z, z′) = 1

}
,

where hcf(z, z′) denotes the highest common factor of z and z′.

Since the inclusion map

P Z× Z

is injective, we deduce from (ii) that P is countable.

(iv) The map

Q P

which sends q ∈ Q to the unique (z, z′) ∈ P such that q = z
z′ is bijective. Thus Q

is second-countable.

Remark. Let us prove that R is uncountable. Let I denote the unit interval. We will
rely crucially on the fact that if we have a set {An}n∈N of closed subsets of I such that

A0 ⊃ A1 ⊃ A2 ⊃ . . .

then
⋂

n∈NAn is non-empty. We will prove this in a later Exercise Sheet, after we
discussed the notion of a compact topological space and proven that (I,OI) is compact.

Let us here assume it. Suppose that

R N
f

is an injective map. Let

I R
i

denote the inclusion map. Since both i and f are injective, we have that

I N
f ◦ i

is injective. Let us denote this map by g.
Inductively, we construct for any n ∈ N a subset An of I with the following properties.
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(1) An is a closed subset of (I,OI).

(2) An ∩ g−1
(
{0, . . . , n

})
= ∅.

(3) An+1 ⊂ An.

We may construct a subset A0 of I which satisfies conditions (1) – (3) by taking the
complement in I of any neighbourhood of g−1(0). Suppose that we have constructed
An−1.

Since g is injective, the g−1(i) ∈ I for 0 ≤ i ≤ n are distinct. Thus we may construct
a subset Un of I which is open in (R,OR) and which has the property that

Un = U0
n t U1

n t . . . t Un
n ,

where U i
n is a neighbourhood of g−1(i) in (R,OR). Check that you agree that the

construction of such a Un can be carried out!
Let A = I \ Un. Then A is closed in (I,OI), and A ∩ g−1

(
{0, . . . , n}

)
= ∅. Define An

to be A ∩An−1. Then An satisfies conditions (1) – (3) above.
Since An is closed in (I,OI) for every n ∈ N, we have by Question 4 (i) of Exercise

Sheet 1 that
⋂

n∈NAn is closed in (I,OI). Since An satisfies property (2) for every n ∈ N,
we also have that ⋂

n∈N
An =

( ⋂
n∈N

An

)
∩ I

=
( ⋂

n∈N
An

)
∩ g−1(N)

= ∅.

But since An satisfies property (3) for every n ∈ N, we have that ∅ 6=
⋂

n∈NAn, as
discussed at the beginning of this proof. Thus we have a contradiction.

Question.
(a) Prove that (R,OR) is second-countable.

(b) Prove that the topology O on R defined in Question 7 (b) is not second-countable.

Solution.
(a) The set O′ ··= {(q, r) | q, r ∈ Q} defines a basis of (R,OR). To prove this, it suffices

to demonstrate that for any a, b ∈ R the open interval (a, b) can be obtained as a
union of subsets of R belonging to O′.
Let J = {q ∈ Q | q > a}, and let J ′ = {r ∈ Q | r < b}. Then inf J = a and
sup J ′ = b. Thus

⋃
(j,j′)∈J×J ′(qj , rj) = (a, b).

Let us prove that O′ is countable. There is a bijection between O′ and

{(q, q′) ∈ Q×Q | q < q′}.
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The inclusion map from {(q, q′) ∈ Q × Q | q < q′} to Q × Q is injective. In the
prelude to the question we observed that Q and N×N are countable. Thus Q×Q
is countable. Putting everything together, we have that there is an injection from
O′ to N.

(b) Let O′′ be a basis of O. By Question 3 (b) we have that for every x ∈ R there is
a Ux ∈ O′′ such that x ∈ Ux and Ux ⊂ [x,∞). For every x, x′ ∈ R, we have that
either x < x′ or x′ < x. Without loss of generality, since we may relabel x as x′

and vice versa if necessary, suppose that x < x′.

Then x 6∈ [x′,∞), and thus x 6∈ Ux′ . Since x ∈ Ux, we deduce that Ux 6= Ux′ .

Thus x 7→ Ux defines an injective map

R O′′.

We deduce that O′′ is uncountable.

9

Question.
(a) Which topology on R2 is generated by straight lines of infinite length? Does

restricting to or allowing straight lines of finite length make any difference?

(b) Prove that there are topologies O1 and O2 on R such that the product topology
on R2 with respect to (R,O1) and (R,O2) is the topology generated by straight
lines of infinite length in R2 parallel to the y-axis.

Solution.
(a) The discrete topology. Indeed, for any (x′, y′) ∈ R2 the intersection of the line

y = x′ with the line x = y′ is {(x, y)}. Thus {(x, y)} is open in the topology O on
R2 generated by straight lines. By Question 1, we deduce that O is the discrete
topology.

Restricting to or allowing straight lines of finite length does not make any differ-
ence.

(b) We may take O1 to be the indiscrete topology, and O2 to be the discrete topology.
Indeed, let O denote the product topology with respect to (R,O1) and (R,O2).

Let O′ denote the topology generated by the set O′′ of straight lines in R2 parallel
to the y-axis. Then O′′ defines a basis for (R2,O′). We also have that

O′′′ ··=
{
{x} × R | x ∈ R

}
defines a basis for (R2,O).

Since O′′ = O′′′, we deduce that O = O′.
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This question builds upon Question 8 on Exercise Sheet 1.

Question.
(a) Let (X,<) be a pre-order. Let O denote the corresponding topology upon X. For

every x ∈ X, let Ux ··=
{
x′ ∈ X | x < x′

}
. Prove that

{
Ux | x ∈ X

}
defines a

basis for (X,O).

(b) Let (X,O) be an Alexandroff space. As in Question 8 on Exercise Sheet 1, let
Ux denote the intersection of all open subsets of X containing x. Prove that{
Ux | x ∈ X

}
defines a basis for (X,O).

(c) Let (X,O) be an Alexandroff space. Define x << x′ if Ux ⊃ Ux′ . Prove that <<
defines a pre-ordering on X. This pre-ordering is the ‘other way around’ from the
pre-ordering that was defined in Question 9 (f) of Exercise Sheet 1.

(d) Let (X,<) be a pre-ordering, and let O denote the corresponding topology on X.
Let << denote the pre-order on X of (c) corresponding to (X,O). Prove that <<
coincides with <.

(e) Let (X,O) be an Alexandroff space, and let < denote the pre-order on X of (c)
corresponding to (X,O). Let O< denote the topology on X corresponding to <.
Prove that O = O<.

Solution.
(a) Suppose that x′ ∈ Ux, and that x′′ ∈ X has the property that x′ < x′′. By

definition of Ux, we have that x < x′. Thus x < x′′, and hence x′′ ∈ Ux. We
deduce that Ux belongs to O.

Suppose now that U ⊂ X belongs to O, and x ∈ U . If x′ ∈ Ux, then x < x′. Thus,
by the defining property of U , we have that x′ ∈ U . Hence Ux ⊂ U . then x < x′.
By Question 3, we deduce that

{
Ux | x ∈ X

}
defines a basis for (X,O).

(b) Since (X,O) is an Alexandroff space, we have that Ux ∈ O for every x ∈X. Suppose
that U ⊂ X belongs to O, and let x ∈ U . By definition of Ux, we have that Ux ⊂ U .
By Question 3 (a), we deduce that

{
Ux | x ∈ X

}
defines a basis for (X,O).

(c) Suppose that x, x′, x′′ ∈ X and that x < x′ and x′ < x′′. By definition, we then
have that Ux ⊃ Ux′ and that Ux′ ⊃ Ux′′ . Then Ux ⊃ Ux′′ , and thus x < x′′.

(d) Suppose that x, x′ ∈ X and that x < x′. For every neighbourhood U of x in (X,O)
we have by definition of O that x′ ∈ U , and thus that U is a neighbourhood of x′.
It follows immediately that Ux ⊃ Ux′ , and hence that x << x′.

Suppose instead that x << x′, so that Ux ⊃ Ux′ . By definition, Ux is the inter-
section of all neighbourhoods of x in (X,O). By (a) and the fact that x < x, we
have that Ux is a neighbourhood of x in (X,O). Thus Ux ⊂ Ux. Hence Ux′ ⊂ Ux.
Since x′ ∈ Ux′ , we deduce that x′ ∈ Ux, and thus that x < x′.
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(e) Suppose that x′ ∈ X has the property that Ux ⊃ Ux′ . Then since x′ ∈ Ux′ we have
that x′ ∈ Ux. Thus

{x′ ∈ X | Ux ⊃ Ux′} ⊂ Ux.

Suppose instead that x′ ∈ Ux. Then by definition of Ux, every neighbourhood of
x in (X,O) is a neighbourhood of x′. Thus Ux′ ⊂ Ux, and we have that

Ux ⊂ {x′ ∈ X | Ux ⊃ Ux′}.

We deduce that Ux = {x′ ∈ X | Ux ⊃ Ux′}.
By (a), we have that

{
Ux | x ∈ X

}
defines a basis for (X,O<). In addition, we

have that

Ux = {x′ ∈ X | x < x′}
= {x′ ∈ X | Ux ⊃ Ux′}
= Ux.

Moreover by (b) we have that {Ux | x ∈ X} defines a basis for (X,O). We deduce
that O′ = O.
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