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Question.

(a) Let (X,OX) and (Y,OY ) be topological spaces. Prove that a map

X Y
f

is continuous if and only if f−1(A) is closed in X for every closed subset A of Y .

(b) Let (X,OX) and (Y,OY ) be topological spaces. Prove that a map

X Y
f

is continuous if and only if for every x ∈ X and every neighbourhood U of f(x) in
(Y,OY ), there is a neighbourhood U ′ of x in (X,OX) such that f(U ′) ⊂ U .

(c) Let (X,OX) and (Y,OY ) be topological spaces, and let O′Y be a basis for (Y,OY ).
Prove that a map

X Y
f

is continuous if and only if f−1(U) ∈ OX for every U ∈ O′Y .
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(d) Let (X,OX) and (Y,OY ) be topological spaces, and let O′Y be a sub-basis for
(Y,OY ). Prove that a map

X Y
f

is continuous if and only if f−1(U) ∈ OX for every U ∈ O′Y .

(e) Let (X,OX) and (Y,OY ) be topological spaces. Let {Uj}j∈J be a basis for (X,OX),
and let {U ′j′}j′∈J ′ be a basis for (Y,OY ). Prove that a map

X Y
f

is continuous if and only if for each x ∈ X and each j′ ∈ J ′ such that f(x) ∈ U ′j′
there is a j ∈ J such that x ∈ Uj and f(Uj) ⊂ U ′j′ .

Solution.

(a) Let A be a closed subset of Y with respect to OY . By definition, we have that
Y \A is open in (Y,OY ). If f is continuous, we deduce that

X \
(
f−1(A)

)
= f−1(Y \A)

is open in (X,OX). Thus f−1(A) is closed in (X,OX).

Suppose that f−1(A) is closed in (X,OX) for every closed subset A of Y with
respect to OY . Let U be an open subset of Y with respect to OY . Then Y \ U is
closed in (Y,OY ), and we deduce that

X \ f−1(U) = f−1(Y \ U)

is closed in (X,OX). Thus U = X \ (X \ U) is open in (X,OX).

(b) Suppose that f is continuous. Let x ∈ X, and let U be a neighbourhood of f(x)
in (Y,OY ). Let U ′ = f−1(U). Since f is continuous, U ′ ∈ OX . Moreover, we have
that f(U ′) ⊂ U .

Conversely, suppose that for every x ∈ X and every neighbourhood U of f(x) in
(Y,OY ), there is a neighbourhood U ′ of x in (X,OX) such that f(U ′) ⊂ U . Let
U ′′ ∈ OY , and let x ∈ f−1(U ′′). Then U ′′ is a neighbourhood of f(x) in (Y,OY ).
By assumption, we deduce that there is a neighbourhood Ux of x in (X,OX) such
that f(Ux) ⊂ U ′′.

Then Ux ⊂ f−1(U ′′), and thus
⋃
x∈f−1(U ′′) Ux ⊂ f−1(U ′′). Since x ∈ Ux, we also

have that f−1(U ′′) ⊂
⋃
x∈f−1(U ′′) Ux,. We deduce that

⋃
x∈f−1(U ′′) Ux = f−1(U ′′).

Since Ux ∈ OX for all x ∈ f−1(U ′′), we have that
⋃
x∈f−1(U ′′) Ux is open in (X,OX).

We conclude that f−1(U ′′) ∈ OX , as required.
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(c) Since O′Y is a basis for (Y,OY ), we have that U ∈ OY for every U ∈ O′Y . If f is
continuous, we thus have that f−1(U) ∈ OX for all U ∈ O′Y .

Conversely, suppose that f−1(U ′) ∈ OX for every U ′ ∈ O′Y . Let U ∈ OY . Since
O′Y is a basis for (Y,OY ), we have that U =

⋃
j∈J U

′
j for a set {U ′j}j∈J of subsets

of Y which belong to O′Y . Then

f−1(U) = f−1
( ⋃
j∈J

U ′j
)

=
⋃
j∈J

f−1(U ′j).

By assumption, we have that f−1(Uj) ∈ OX for all j ∈ J . Since OX defines
a topology on X, we deduce that

⋃
j∈J f

−1(Uj) belongs to OX ¡ and thus that

f−1(U) ∈ OX .

(d) Since O′Y is a sub-basis for (Y,OY ), we have that U ∈ OY for every U ∈ O′Y . If f
is continuous, we thus have that f−1(U) ∈ OX for all U ∈ O′Y .

Conversely, let O′′Y denote the set of subsets of Y obtained by taking finite inter-
sections of subsets of Y which belong to O′Y . Then O′′Y defines a basis for (Y,OY ).
We deduce by (1) that it suffices to show that f−1(

⋂
j∈J Uj) ∈ OX for any finite

set {Uj}j∈J of subsets of Y which belong to O′Y .

We have that f−1
(⋂

j∈J Uj
)

=
⋂
j∈J f

−1(Uj). By assumption, we have that

f−1(Uj) ∈ OX for all j ∈ J . Since J is finite and since OX defines a topology on
X, we deduce that

⋂
j∈J f

−1(Uj) ∈ OX , and thus that f−1(
⋂
j∈J Uj) ∈ OX .

(e) Suppose that f is continuous. Let x ∈ X and j′ ∈ J ′ be such that f(x) ∈ U ′j′ .
By part (b), we have that there is a neighbourhood U of x in (X,OX) such that
f(U) ⊂ U ′j′ . By Question 3 (b) on Exercise Sheet 2, there is a j ∈ J such that
x ∈ Uj and Uj ⊂ U . We have that f(Uj) ⊂ f(U) ⊂ U ′j′ , and thus that f(Uj) ⊂ U ′j′ .

Conversely, suppose that for each x ∈ X and each j′ ∈ J ′ such that f(x) ∈ U ′j′
there is a j ∈ J such that x ∈ Uj and f(Uj) ⊂ U ′j′ . Let x ∈ X, and let U ′ be a
neighbourhood of f(x) in (Y,OY ). By Question 3 (b) of Exercise Sheet 2, there is
a j′ ∈ J ′ such that f(x) ∈ U ′j′ and U ′j′ ⊂ U ′. By assumption, there is a j ∈ J such
that x ∈ Uj and f(Uj) ⊂ U ′j′ . Thus f(Uj) ⊂ U ′. We deduce by part (b) that f is
continuous.

2

Question.

Let X = {a, b, c} be equipped with the topology

OX =
{
∅, {b}, {a, b}, {b, c}, X

}
,
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and let Y = {a′, b′, c′, d′, e′} be equipped with the topology

OY =
{
∅, {a′}, {e}, {a′, e′}, {b′, c′}, {a′, b′, c′}, {b′, c′, e′}, {a′, b′, c′, e′}, {b′, c′, d′, e′}, Y

}
.

Which of the following maps

X Y
f

are continuous?

(1) a 7→ d′, b 7→ e′, c 7→ d′.

(2) a 7→ e′, b 7→ e′, c 7→ c′.

(3) a 7→ c′, b 7→ a′, c 7→ d′.

(4) a 7→ b′, b 7→ c′, c 7→ d′.

Solution.

Note that O′Y =
{
{a′, e′}, {a′, b′, c′}, {b′, c′, d′, e′}

}
defines a sub-basis for OY . By Ques-

tion 1 (d), it suffices to check that f−1(U) ∈ OX for each of the three sets U ∈ O′Y .

(1) We have that f−1
(
{a′, e′}

)
= {b}, f−1

(
{a′, b′, c′}

)
= ∅, and f−1

(
{b′, c′, d′, e′}

)
=

X, all of which belong to OX . Thus f is continuous.

(2) We have that f−1
(
{a′, b′, c′}

)
= {c}, which does not belong to OX . Thus f is not

continuous.

(3) We have that f−1
(
{b′, c′, d′, e′}

)
= {a, c}, which does not belong to OX . Thus f is

not continuous.

(4) We have that f−1
(
{a′, e′}

)
= ∅, f−1

(
{a′, b′, c′}

)
= {a, b}, and f−1

(
{b′, c′, d′, e′}

)
=

X, all of which belong to OX . Thus f is continuous.

3

Question.

Let (X,OX) be a topological space, and let R be equipped with its standard topology
OR.
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(a) Let

X R
f

be a continuous map. Prove that the map

X R
|f |

given by x 7→ |f(x)| is continuous.

(b) Let

X R
f

be a continuous map. Prove that for any k ∈ R, the map

X R
kf

given by x 7→ k · f(x) is continuous.

(c) Let

X R
f

g

be continuous maps. Prove that the map

X R
f + g

given by x 7→ f(x) + g(x) is continuous.

Hint:

(i) Appeal to Question 7 (a) of Exercise Sheet 2.

(ii) For any b ∈ R, appeal to the fact that

{x ∈ X | f(x)+g(x) < b} =
⋃
y∈R

({
x ∈ X | f(x) < b−y

}
∩
{
x ∈ X | g(x) < y

})
.
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(iii) For any a ∈ R, appeal to an analogous expression of

{x ∈ X | f(x) + g(x) > a}

as a union of intersections.

(d) Let

X R
f

g

be continuous maps. Prove that the map

X R
fg

given by x 7→ f(x) · g(x) is continuous.

Hint:

(i) Prove that if f(x) ≥ 0 for all x ∈ X, then the map

X R
f2

given by x 7→ f(x) · f(x) is continuous.

(ii) Find an expression for fg which allows you to deduce the continuity of fg
from (i) and parts (a)–(c).

(e) Let

X R
f

g

be continuous maps, and suppose that g(x) 6= 0 for all x ∈ X. Prove that

X R
f
g

given by x 7→ f(x)
g(x) is continuous.
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Hint:

For any a, b ∈ R, find an expression for
{
x ∈ X | 1

f(x) < b
}

and an expression for{
x ∈ X | 1

f(x) > a
}

which allows you to deduce that f−1
(
(−∞, b)

)
and f−1

(
(a,∞)

)
are open in (X,OX) from the continuity of f and the continuity of bf and af .

(f) Deduce that a map

R R

which is a quotient of polynomials, namely a map of the form

x 7→ k0 + k1x+ k2x
2 + . . .+ kmx

m

l0 + l1x+ l2x2 + . . .+ lnxn

where m,n ∈ N, ki ∈ R for all 0 ≤ i ≤ m, and lj ∈ R for all 0 ≤ j ≤ n, is
continuous.

Here we assume that

0 6= l0 + l1x+ l2x
2 + . . .+ lnx

n

for all x ∈ R.

(g) Prove that the map

R× R R
×

given by (x, y) 7→ xy is continuous.

(h) Prove that the map

R× R R
+

given by (x, y) 7→ x+ y is continuous.

Solution.

(a) By definition of OR, the set of open intervals (a, b) in R defines a basis for (R,OR).
By Question 1 (c) it is sufficient to check that |f |−1

(
(a, b)

)
is open in (X,OX) for

any a, b ∈ R with a < b.

7



Indeed, we have that

|f−1|
(
(a, b)

)
= {x ∈ X | a < |f(x)| < b}
= {x ∈ X | −b < f(x) < −a} ∪ {x ∈ X | a < f(x) < b}
= f−1

(
(−b,−a)

)
∪ f−1

(
(a, b)

)
= f−1

(
(−b,−a) ∪ (a, b)

)
.

Since f is continuous, f−1
(
(−b,−a)∪(a, b)

)
is open in (X,OX). Thus |f−1|

(
(a, b)

)
is open in (X,OX).

(b) Again, it is sufficient to check that f−1
(
(a, b)

)
is open in (X,OX) for any a, b ∈ R

with a < b.

If k = 0, then kf is the constant map x 7→ 0 for all x ∈ X. By Proposition 2.18 in
the Lecture Notes, we deduce that kf is continuous.

If k > 0, we have that

(kf)−1
(
(a, b)

)
= {x ∈ X | a < kf(x) < b}

= {x ∈ X | a
k
< f(x) <

b

k
}

= f−1
(
(ka, kb)

)
.

Since f is continuous, f−1
(
(ka, kb)

)
is open in (X,OX). Thus (kf)−1

(
(a, b)

)
is

open in (X,OX).

If k < 0, we have that

(kf)−1
(
(a, b)

)
= {x ∈ X | a < kf(x) < b}

= {x ∈ X | b
k
< f(x) <

a

k
}

= f−1
(
(kb, ka)

)
.

Since f is continuous, f−1
(
(kb, ka)

)
is open in (X,OX). Thus (kf)−1

(
(b, a)

)
is

open in (X,OX).

(c) By Question 7 (a) of Exercise Sheet 2,

{(−∞, b) | b ∈ R} ∪ {(a,∞) | a ∈ R}

defines a sub-basis for (R,OR). By Question 1 (d) it is therefore sufficient to check
that (f + g)−1

(
(−∞, b)

)
∈ OX for all b ∈ R and that (f + g)−1

(
(a,∞)

)
∈ OX for

all a ∈ R.

Let us prove that

{x ∈ X | f(x) + g(x) < b} =
⋃
y∈R

({
x ∈ X | f(x) < b− y

}
∩
{
x ∈ X | g(x) < y

})
.

8



Suppose that x ∈ X has the property that f(x) < b − y and g(x) < y for some
y ∈ R. Then f(x) + g(x) < (b− y) + y = b. Thus we have that⋃
y∈R

({
x ∈ X | f(x) < b− y

}
∩
{
x ∈ X | g(x) < y

})
⊂ {x ∈ X | f(x) + g(x) < b}.

Conversely, suppose that x′ ∈ X has the property that f(x′) +g(x′) < b. Take any
y ∈ R be such that g(x′) < y < b− f(x′). Then

x′ ∈
{
x ∈ X | f(x) < b− y

}
∩
{
x ∈ X | g(x) < y

}
.

We deduce that

{x ∈ X | f(x) + g(x) < b} ⊂
⋃
y∈R

({
x ∈ X | f(x) < b− y

}
∩
{
x ∈ X | g(x) < y

})
.

This completes the proof that

{x ∈ X | f(x) + g(x) < b} =
⋃
y∈R

({
x ∈ X | f(x) < b− y

}
∩
{
x ∈ X | g(x) < y

})
.

We have that

(f + g)−1
(
(−∞, b)

)
= {x ∈ X | f(x) + g(x) < b}

=
⋃
y∈R

({
x ∈ X | f(x) < b− y

}
∩
{
x ∈ X | g(x) < y

})
=
⋃
y∈R

(
f−1

(
(−∞, b− y)

)
∩ g−1

(
(−∞, y

))
.

Since f is continuous, f−1
(
(−∞, b− y)

)
is open in (X,OX). Since g is continuous,

g−1
(
(−∞, y)

)
is open in (X,OX). Thus f−1

(
(−∞, b− y)

)
∩ g−1

(
(−∞, y)

)
is open

in (X,OX) for all y ∈ R, and hence⋃
y∈R

(
f−1

(
(−∞, b− y)

)
∩ g−1

(
(−∞, y)

))
is open in (X,OX). Thus (f + g)−1

(
(−∞, b)

)
is open in (X,OX).

Similarly we have that

(f + g)−1
(
(a,∞)

)
= {x ∈ X | f(x) + g(x) > a}

=
⋃
y∈R

({
x ∈ X | f(x) > a− y

}
∩
{
x ∈ X | g(x) > y

})
=
⋃
y∈R

(
f−1

(
(a− y,∞)

)
∩ g−1

(
(a,∞)

))
.
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Since f is continuous, f−1
(
(a− y,∞)

)
is open in (X,OX). Since g is continuous,

g−1
(
(y,∞)

)
is open in (X,OX). Thus f−1

(
(a − y,∞)

)
∩ g−1

(
(y,∞)

)
is open in

(X,OX) for all y ∈ R, and hence⋃
y∈R

(
f−1

(
(a− y,∞)

)
∩ g−1

(
(y,∞)

))
is open in (X,OX). Thus (f + g)−1

(
(a,∞)

)
is open in (X,OX).

(d) Let us first prove that if f(x) ≥ 0 for all x ∈ X, then f2 is continuous. As in parts
(a) and (b), it is sufficient to check that (f2)−1

(
(a, b)

)
is open in (X,OX) for any

a, b ∈ R with a < b. Indeed we have that

(f2)−1
(
(a, b)

)
= {x ∈ X | {x ∈ X | a < f(x) · f(x) < b}

= {x ∈ X |
√
a < f(x) <

√
b}

= f−1
(
(
√
a,
√
b)
)
.

Since f is continuous, f−1
(
(
√
a,
√
b)
)

is open in (X,OX), and thus (f2)−1
(
(a, b)

)
is open in (X,OX).

Next, note that f(x) · g(x) = 1
4

(∣∣f(x) + g(x)
∣∣2 − ∣∣f(x)− g(x)

∣∣2). By part (c) we

have that f + g is continuous. By part (a) we deduce that |f + g| is continuous.
By part (b) we have that −g is continuous. Thus by part (c) we have that f − g
is continuous. By part (a) we deduce that |f − g| is continuous.

Hence |f+g|2 and |f−g|2 are continuous. By part (c) we deduce that |f+g|2+|f−
g|2 is continuous. By part (b) we conclude that 1

4

(∣∣f(x) + g(x)
∣∣2− ∣∣f(x)− g(x)

∣∣2)
is continuous, and thus that fg is continuous.

(e) Let us first prove that the map

X R
1
g

given by x 7→ 1
g(x) is continuous. We proceed as in (c). By Question 7 (a) of

Exercise Sheet 2,
{(−∞, b) | b ∈ R} ∪ {(a,∞) | a ∈ R}

defines a sub-basis for (R,OR). By Question 1 (d) it is therefore sufficient to check
that (1g )−1

(
(−∞, b)

)
∈ OX for all b ∈ R and that (1g )−1

(
(a,∞)

)
∈ OX for all

a ∈ R.

Note that

{x ∈ X | 1

g(x)
> a}
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is the union of
{x ∈ X | g(x) > 0} ∩ {x ∈ X | ag(x) < 1}

and
{x ∈ X | g(x) < 0} ∩ {x ∈ X | ag(x) > 1}.

Since g is continuous, g−1
(
(0,∞)

)
= {x ∈ X | g(x) > 0} is open in X, and

g−1
(
(−∞, 0)

)
= {x ∈ X | g(x) < 0} is open in X.

Moreover, by (b), the map

X R
ag

is continuous, since g is continuous. Hence

(ag)−1
(
(−∞, 1)

)
= {x ∈ X | ag(x) < 1}

is open in X, and

(ag)−1
(
(1,∞)

)
= {x ∈ X | ag(x) > 1}

is open in X. We conclude that(1

g

)−1(
(a,∞)

)
= {x ∈ X | 1

g(x)
> a}

is open in X.

Similarly, note that

{x ∈ X | 1

g(x)
< b}

is the union of
{x ∈ X | g(x) > 0} ∩ {x ∈ X | ag(x) > 1}

and
{x ∈ X | g(x) < 0} ∩ {x ∈ X | ag(x) < 1}.

We deduce in the same way as above that( 1

g(x)

)−1(
(−∞, b)

)
= {x ∈ X | 1

g(x)
< b}

is open in X.

This completes the proof that 1
g is continuous. Since f

g = f ·
(
1
g

)
, we deduce from

(d) that f
g is continuous.
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(f) Note first that the identity map

R R,id

namely the map given by x 7→ x, is continuous. Indeed, if U is open in R, then
id−1(U) = U is open in R. By (d) and induction, we deduce that for any n ≥ 1
the map

R R

given by x 7→ xn is continuous. By (b), we deduce that for any n ≥ 0 and any
kn ∈ R the map

X X
R

given by x 7→ knx
n is continuous.

By Proposition 2.18 in the Lecture Notes, we also have that the constant map

R R

given by x 7→ k0 for all x ∈ X is continuous, for any k0 ∈ R. By (c), we deduce
that a polynomial map

R R,

namely a map given by

x 7→ k0 + k1x+ k2x
2 + . . .+ knx

n

for some n ≥ 0 and kn ∈ R is continuous. By (e), we conclude that a quotient of
polynomials as in the question is continuous.

(g) The map

R× R R
×

is the product p1 · p2 of the maps
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R× R R
p1

and

R× R R.
p2

By Proposition 3.2 in the Lecture Notes, we have that p1 and p2 are continuous.
By (d), we deduce that × is continuous.

(h) The map

R× R R
×

is the sum p1 + p2 of the maps

R× R R
p1

and

R× R R.
p2

Again, by Proposition 3.2 in the Lecture Notes, we have that p1 and p2 are con-
tinuous. By (c), we deduce that × is continuous.

4

Question.

(a) Let (X,OX), (Y,OY ), and (Z,OZ) be topological spaces, and let

Z X
f

and

Z Y
g

be continuous maps. Prove that the map
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Z X × Y
f × g

given by z 7→
(
f(z), g(z)

)
is continuous.

(b) Let (X,OX), (Y,OY ), and (Z,OZ) be topological spaces. Prove that a map

Z X × Y
f

is continuous if and only if the maps

Z X
p1 ◦ f

and

Z Y
p2 ◦ f

are continuous.

(c) Let (X,OX), (Y,OY ), (X ′,OX′), and (Y ′,OY ′) be topological spaces, and let

X X ′
f

and

Y Y ′
g

be continuous maps. Prove that the map

X × Y X ′ × Y ′
f × g

given by (x, y) 7→
(
f(x), g(y)

)
is continuous.

(d) Let (X,OX) be a topological space. Prove that the map

X X ×X∆

given by x 7→ (x, x) is continuous.
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(e) Let (X,OX) and (Y,OY ) be topological spaces. Prove that the map

X × Y Y ×Xτ

given by (x, y) 7→ (y, x) is continuous.

Solution.

(a) By Question 4 (a) of Exercise Sheet 2, we have that {U ×U ′ | U ∈ OX , U ′ ∈ OY }
defines a basis for OX×Y . By Question 1 (c), it therefore suffices to prove that
(f × g)−1(U × U ′) ∈ OZ for any U ∈ OX and U ′ ∈ O′Y .

Indeed, we have that (f×g)−1(U×U ′) = f−1(U)∩g−1(U ′). Since f is continuous,
f−1(U) ∈ OZ . Since g is continuous, g−1(U ′) ∈ OZ . Hence f−1(U)∩g−1(U ′) ∈ OZ .

(b) By Proposition 3.2 of the Lecture Notes, we have that p1 and p2 are continuous.
Hence, by Proposition 2.16 of the Lecture Notes, if f is continuous then p1 ◦ f and
p2 ◦ f are continuous.

Conversely, suppose that p1 ◦ f and p2 ◦ f are continuous. We have that f =
(p1 ◦ f)× (p2 × f). We deduce from (a) that f is continuous.

(c) We have that f × g =
(
p′1 ◦ (f × g)

)
×
(
p′2 ◦ (f × g)

)
, where

X ′ × Y ′ X ′
p′1

and

X ′ × Y ′ Y ′
p′2

are the projection maps. By (b), we deduce that f × g is continuous.

(d) We have that ∆ = id× id. Since id is continuous, ∆ is continuous by (a).

(e) We have that τ = p2 × p1, where

X × Y X
p1

and

X × Y Y
p2

15



are the projection maps. Since p1 and p2 are continuous by Proposition 3.2 in the
Lecture Notes, we deduce that τ is continuous by (a).

5

Question.

Let (X,OX) and (X ′,OX′) be topological spaces. Let

X × Y X
p1

and

X × Y Y
p2

denote the projection maps.

Let A be a closed subset of (X,OX), and let A′ be a closed subset of (X ′,OX′). By
Proposition 3.2 in the Lecture Notes we have that p1 and p2 are continuous. Use this to
prove that A×A′ is a closed subset of (X ×X ′,OX×X′).

Solution.

Since p1 is continuous and A is closed in (X,OX) we have by Question 1 (a) that p−11 (A)
is closed in (X × Y,OX×Y ). In addition we have that A ×X ′ = p−11 (A). Thus A ×X ′
is closed in (X × Y,OX×Y ).

Since p2 is continuous and A′ is closed in (X ′,OX′) we have by Question 1 (a) that
p−12 (A′) is closed in X × Y . In addition we have that X × A′ = p−12 (A′). Thus X × A′
is closed in (X × Y,OX×Y ).

We have that A×A′ = (A×X ′) ∩ (X ×A′). Since both A×X ′ and X ×A′ are closed
in (X × Y,OX×Y ) we deduce that A×A′ is closed in (X × Y,OX×Y ).

6

Question.

Let (X,OX) and (Y,OY ) be topological spaces, and let A be a subset of X equipped
with the subspace topology OA with respect to (X,OX).

16



(a) Let

X Y
f

be a continuous map. Prove that the restriction of f to A defines a continuous
map

A Y.

(b) Let

A X
i

denote the inclusion map. Prove that a map

Y A
f

is continuous if and only if the map

Y X
i ◦ f

is continuous.

(c) Let (X,OX) and (Y,OY ) be topological spaces, and let A be a subset of X equipped
with the subspace topology OA with respect to (X,OX). Give an example to show
that a continuous map

A Y
f

need not extend to a continuous map

X Y.

In other words, find topological spaces (X,OX), (Y,OY ), and (A,OA) and a con-
tinuous map

17



A Y
f

which cannot be the restriction of any continuous map

X Y.

Solution.

(a) Let f ′ denote the restriction of f to A. Let U ∈ OY . Then (f ′)−1(U) = A∩f−1(U).
Since f is continuous, f−1(U) ∈ OX . Hence, by definition of OA, we have that
A ∩ f−1(U) is open in (A,OA). Thus (f ′)−1(U) is open in (A,OA).

(b) By Proposition 2.15 in the Lecture Notes, i is continuous. Thus if f is continuous,
then i ◦ f is continuous by Proposition 2.16 in the Lecture Notes.

Conversely, suppose that i ◦ f is continuous. Let U ∈ OA. Then U = A ∩ U ′ for
some U ′ ∈ OX . We have that

(i ◦ f)−1(U ′) = f−1
(
i−1(U ′)

)
= f−1(A ∩ U ′)
= f−1(U).

If i ◦ f is continuous, then (i ◦ f)−1(U ′) is open in Y , and hence f−1(U) is open in
Y .

(c) We can for instance take both (X,OX) and (Y,OY ) to be (R,OR), let A =
(−∞, 0)t (0,∞) be equipped with the subspace topology with respect to (R,OR),
and define

A R
f

to be the map given by x 7→ 0 if x ∈ (−∞, 0) and x 7→ 1 if x ∈ (0,∞).

Then f is continuous. After we have explored ‘coproduct topologies’ we will be
able to see this immediately, but let us here verify it by hand. Let U ∈ OR. If
0 ∈ U and 1 6∈ U , then f−1

(
U
)

= (−∞, 0) ∈ OA. If 1 ∈ U and 0 6∈ U , then
f−1

(
U
)

= (0,∞) ∈ OA. If 0 ∈ U and 1 ∈ U , then f−1
(
U
)

= (−∞, 0) ∪ (0,∞),
which is open in OA. Finally, if 0 6∈ U and 1 6∈ U , then f−1

(
U
)

= ∅ ∈ OA.

Let

R R
f ′

18



be a map whose restriction to A is f . If f ′(0) 6= 0 and f ′ 6= 1, there is an
open interval (a, b) such that f ′(0) ∈ (a, b) and 0 6∈ (a, b) and 1 6∈ (a, b). Then
f ′
(
(a, b)

)
= {0}, which is not open in R.

If f ′(0) = 0, then for any U ∈ OR such that 0 ∈ U we have that (f ′)−1(U) =
(−∞, 0], which is not open in (R,OR) since it cannot be obtained as a union of
open intervals (check that you can rigorously prove this — it is not difficult!).

If f ′(0) = 1, then for any U ∈ OR such that 0 ∈ U we have that (f ′)−1(U) = [0,∞),
which similarly is not open in (R,OR).

This proves that f ′ cannot be continuous.

7

Question.

Let (X,OX) and (Y,OY ) be topological spaces, and let A be a subset of Y . Let A be
equipped with the subspace topology OA with respect to (Y,OY ).

(a) Prove that if

X Y
f

is a continuous map such that f(X) ⊂ A, then the map

X A

given by x 7→ f(x) is continuous.

(b) Prove that if

X A
f

is a continuous map, then the map

X Y

given by x 7→ f(x) is continuous.

Solution.
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(a) Let

X A
f ′

denote the map given by x 7→ f(x). Let U ∈ OA. By definition of OA, we have
that U = A ∩ U ′ for some U ′ ∈ OY . Since f(X) ⊂ A, we have that

f−1(U) = f−1(A ∩ U ′)
= f−1(A) ∩ f−1(U ′)
= X ∩ f−1(U ′)
= f−1(U ′).

Since (f ′)−1(U) = f−1(U), we deduce that (f ′)−1(U) = f−1(U ′). Since f is
continuous, f−1(U ′) ∈ OX . Thus (f ′)−1(U) ∈ OX .

(b) Let

X Y
f ′

denote the map given by x 7→ f(x). Let U ∈ OY . By definition of OA, we have
that A∩U is open in (A,OA). Since f is continuous, we deduce that f−1(A∩U) is
open in (X,OX). We have that f−1(A ∩ U) = f−1(A) ∩ f−1(U) = X ∩ f−1(U) =
f−1(U) = (f ′)−1(U). Thus (f ′)−1(U) is open in (X,OX).

8

Let X and Y be sets, and let
{
Aj
}
j∈J be a set of subsets of (X,OX) such that X =⋃

j∈J Aj . Let A =
⋂
j∈J Aj .

Suppose that for every j ∈ J we have a map

Aj Y
fj

such that the restriction of fj to A′ is equal to the restriction of fj′ to A for all (j, j′) ∈
J × J . Then the map

X Y
g

given by x 7→ fj(x) if x ∈ Aj is well-defined.
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Now let OX be a topology upon X, and let OY be a topology upon Y . Equip every
Aj for j ∈ J with the subspace topology with respect (X,OX). Suppose that fj is
continuous for every j ∈ J .

Question.

(a) Prove that if Aj is open in (X,OX) for every j ∈ J , then g is continuous.

(b) Prove that if J is finite and Aj is closed in (X,OX) for every j ∈ J , then g is
continuous.

(c) Find an example to show that for an arbitrary finite set {Aj}, it need not be the
case that g is continuous.

(d) Find an example to show that when J is infinite, then g need not be continuous
even if Aj is closed in (X,OX) for every j ∈ J .

Remark 0.1. The result of (a) and (b) is known as the glueing lemma or pasting lemma.

Solution.

(a) Let U ∈ OY . We have that g−1(U) =
⋃
j∈J f

−1
j (U). Since fj is continuous for all

j ∈ J we have that f−1j (U) ∈ OAj for all j ∈ J . Since Aj is open in X, we deduce

that
⋃
j∈J f

−1
j (U) is open in (X,OX). Thus g−1(U) is open in X.

(b) By induction, it suffices to consider the case that X = A1 ∪A2 for subsets A1 and
A2 of X. Let

A1 Y
f1

denote the restriction of f to A1, and let

A1 Y
f1

denote the restriction of f to A2.

Let V be a closed subset of Y . Since f1 is continuous, by Question 1 (a) we have
that f−11 (V ) is closed in A1. Since A1 is closed in X, we deduce that f−11 (V ) is
closed in X.

Similarly, since f2 is continuous, by Question 2 (a) we have that f−12 (V ) is closed
in A2. Since A2 is closed in X, we deduce that f−12 (V ) is closed in X.

Note that
f−1(V ) = f−11 (V ) ∪ f−12 (V ).

Since f−11 (V ) and f−12 (V ) are closed in X, we deduce that f−1(V ) is closed in X.
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(c) Let (X,OX) be (R,OR), and let X = (−∞, 0) ∪ [0,∞). Let

R R
f

denote the map given by

x 7→

{
0 if x < 0,

1 if x ≥ 0.

The restriction f1 of f to (−∞, 0) is the constant map given by x 7→ 0 for all
x ∈ (−∞, 0). The restriction f2 of f to [0,∞) is the constant map given by x 7→ 1
for all x ∈ [0,∞). By Proposition 2.18 in the Lecture Notes, we have that both f1
and f2 are continuous.

But f is not continuous, since f−1
(
U) = [0,∞) for any U ∈ OR such that 1 ∈ U

and 0 6∈ U . As we already observed in the solution to Question 6 (c), [0,∞) is not
an open subset of (R,OR).

(d) Let (X,OX) = [0, 1], let An = [ 1n , 1] for any n ∈ N with n ≥ 1, and let A0 = {0}.
Define

[ 1n , 1] R
fn

to be the constant map given by x 7→ 1 for all x ∈ [ 1n , 1]. Let

{0} R
f0

be the map 0 7→ 0. By Proposition 2.16 of the Lecture Notes, fn is continuous for
all n ≥ 0. The corresponding map

[0, 1] R
g

is given by

x 7→

{
1 if x ∈ (0, 1],

0 if x = 0.

Thus g is not continuous, since for example g−1(U) = {0} for any neighbourhood
U of 0 in (R,OR) which does not contain 1, and {0} is not open in [0, 1].
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9

In this question, we will construct step-by-step a continuous map

R S1.
φ

For any y ∈ [−1, 1], there is a unique ky ∈ R with ky ≥ 0 such that ‖(ky, y)‖ = 1. We
have that

ky =
√

1− y2,

where we take the positive square root.

(0, y)

(0,−1)

(0, 1)

(ky, y)

Given x ∈ [0, 12 ], let y = 1−4x, and define φ(x) to be (ky, y). We may picture φ on [0, 1]
as follows.

Given x ∈ R such that x ∈ [12 , 1], let y = 4x−3, and define φ(x) to be (−ky, y). We may
picture φ on [0, 1] as follows.

Given x ∈ R and n ∈ Z such that x ∈ [n, n+ 1], we define φ(x) to be φ(x− n).
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Remark 0.2. The map φ allows us to construct paths around a circle without using
trigonometric maps. Sine and cosine define continuous maps, but the proof of this is
quite involved. One has two choices.

(1) Appeal to a notion of angle, which requires a rigorous definition of arc length.

(2) Appeal to analytic methods such as power series.

Both of these approaches are quite far removed from our intuitive geometric understand-
ing of paths around a circle! Thus we will not go into this. The map φ is simpler, and
we can construct any path around a circle that we are interested in using it!

Question.

(a) Prove that the map

[0, 12 ] R

given by y 7→ ky is continuous.

(b) Deduce that the maps

[0, 12 ] S1
φ

and

[12 , 1] S1
φ

are continuous.

(c) Deduce that the map

[0, 1] S1
φ

is continuous.

(d) Conclude that the map

R S1
φ

is continuous.
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Solution.

(a) Let us first prove that if

X R
f

is a continuous map, then the map

X R
√
f

given by x 7→
√
f(x) is continuous. Since the set of open intervals (a, b) for a, b ∈ R

defines a basis for (R,OR), by Question 1 (c) it suffices to check that
(√
f
)−1

(a, b)
is open in R for any open interval (a, b).

Indeed, (√
f
)−1(

(a, b)
)

= {x ∈ X | a <
√
f(x) < b}

= {x ∈ X | a2 < f(x) < b2},

since we are taking
√
f(x) to be the positive square root. Thus(√

f
)−1(

(a, b)
)

= f−1
(
(a2, b2)

)
.

Since f is continuous, we have that f−1
(
(a2, b2)

)
is open inX. Thus

(√
f
)−1(

(a, b)
)

is open in X.

This completes the proof that if

X R
f

is continuous, then

X R
√
f

is continuous.

By Question 3 (f) and Question 6 (a) we have that the map

[0, 12 ] R
f
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given by y 7→ 1− y2 is continuous. Thus the map

[0, 12 ] R

given by y 7→ ky is continuous, since it is exactly
√
f .

(b) The map

[0, 12 ] R2
g

given by x 7→ (ky, y) with y = 1− 4x is g′ × i, where

[0, 12 ] R
g′

is the map given by x 7→ ky with y = 1− 4x and

[0, 12 ] R
i

is the inclusion map.

We have that g′ = f ◦ f ′, where

[0, 12 ] [−1, 1]
f ′

is the map given by x 7→ 1− 4x, and where

[−1, 1] R
f

is the map given by y 7→ ky.

By part (a), we have that f is continuous. By Question 3 (f), we have that f ′ is
continuous. Thus, by Proposition 2.16 in the Lecture Notes, we have that g′ is
continuous. Moreover, by Proposition 2.15 in the Lecture Notes, we have that i
is continuous. Thus by Question 4 (a) we have that g = g′ × i is continuous. By
Question 7 (a), we deduce that the map
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[0, 12 ] S1
φ

is continuous.

Similarly the map

[12 , 1] R2
g

given by x 7→ (−ky, y) with y = 4x− 3 is g′ × i, where

[12 , 1] R
g′

is the map given by x 7→ ky with y = 4x− 3 and

[12 , 1] R
i

is the inclusion map.

We have that g′ = f ◦ f ′, where

[12 ], 1 [−1, 1]
f ′

is the map given by x 7→ 4x− 3, and where

[−1, 1] R
f

is the map given by y 7→ −ky.

We observed above that the map

[−1, 1] R

given by y 7→ ky is continuous. By Question 3 (f) we deduce that f is continuous.
By Question 3 (f), we have that f ′ is continuous. Thus, by Proposition 2.16 in the
Lecture Notes, we have that g′ is continuous. Moreover, by Proposition 2.15 in the
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Lecture Notes, we have that i is continuous. Thus by Question 4 (a) we have that
g = g′ × i is continuous. By Question 7 (a), we deduce that the map

[12 , 1] S1
φ

is continuous.

(c) It follows immediately from part (b) and Question 8 that

[0, 1] S1
φ

is continuous.

(d) For any n ∈ Z, the map

[n, n+ 1] [0, 1]
g

given by x 7→ x − n is continuous by Question 3 (f). Moreover, by part (c) the
map

[0, 1] S1
φ

is continuous. Since the map

[n, n+ 1] S1

given by x 7→ φ(x−n) is g ◦φ, we deduce by Proposition 2.16 in the Lecture Notes
that it is continuous.

We deduce by Question 8 that

R S1
φ

is continuous, since we have proven that its restriction to [n, n + 1] is continuous
for every n ∈ Z.
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Question.

(a) Prove that the map of Example 2.13 (2) in the Lecture Notes is continuous.

(b) Prove that the map of Example 2.13 (3) in the Lecture Notes is continuous.

(c) Find a continuous map

I Ak

for a fixed 0 < k < 1
2 which describes a ‘spiral’ as roughly depicted below, starting

at (0, 12), passing through (0, 58), and ending at (0, 34).

(d) Prove that the map

I2 I

given by (x, y) 7→ min{x, y} is continuous. Also, prove that the map

I2 I

given by (x, y) 7→ max{x, y} is continuous. Draw a picture of each of these maps!
You may find it helpful to think of the copy of I in the target as a diagonal in I2.

Solution.
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(a) Let

D2 × I D2
f

be given by (x, y, t) 7→
(
(1− t)x, (1− t)y

)
. Consider the map

R2 × I R2,
g × g′

where

R2 × I R
g

is given by (x, y, t) 7→ (1− t)x, and where

R2 × I R
g′

is given by (x, y, t) 7→ (1− t)y.

By Question 3 (f) and Question 6 (a), the map

I R
u

given by t 7→ 1− t is continuous. Moreover, the identity map

R R
id

is continuous. By Question 4 (c), we deduce that the map

R2 R
id · u

is continuous.

Thinking of R2 × I as R× (R× I), let

R2 × I R× I
p2
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denote the projection map. By Proposition 3.2 in the Lecture Notes, we have that
p2 is continuous. We have that g′ = (id ·u)◦p2. By Proposition 2.16 in the Lecture
Notes, we deduce that g′ is continuous.

Let

R2 × I R× I
q

denote the map given by (x, y, t) 7→ (x, t). Then p = p2 ◦ (τ × id), where

R2 R2
τ

is the map of Question 4 (e). By Question 4 (e), we have that τ is continuous.
Since id is continuous, we deduce by Question 4 (c) that q is continuous. Observe
also that g = (id · u) ◦ q. Thus, by Proposition 2.16 in the Lecture Notes, we
conclude that g is continuous.

Putting everything together, by Question 4 (a) we deduce that the map

R2 × I R2
g × g′

is continuous. Hence, by Question 6 (a), the restriction of g × g′ to D2 × I is
continuous. Since the image of this restriction is contained in (in fact equal to)
D2, we conclude by Question 7 (a) that g × g′ defines a continuous map

D2 × I D2.

This map is exactly f .

(b) Let k ∈ R, and let

I S1
f

be given by t 7→ φ(kt). Then f = φ ◦ g, where

I R
g

is the map given by t 7→ kt. By Question 9 (d), we have that φ is continuous. By
Question 3 (f), we have that g is continuous. Hence, by Proposition 2.16 in the
Lecture Notes, f is continuous.
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(c) The map

I Ak
f

given by t 7→ 1
2φ(t) + (14 t, 0) gives rise to a spiral with the required properties. We

must show that f is continuous.

In order to do so, let us first prove that if (X,OX) is a topological space and

X R2

u

v

are continuous maps, then the map

X R2
u+ v

given by (x, y) 7→ u(x, y) + v(x, y) is continuous. Indeed, we have that u+ v is(
(p1 ◦ u) + (p1 ◦ v)

)
×
(

(p2 ◦ u) + (p2 ◦ v)
)
.

Here

R2 R
p1

p2

are the projection maps.

By Proposition 3.2 in the Lecture Notes, p1 is continuous. Thus, by Proposition
2.16 in the Lecture Notes, p1 ◦ u and p1 ◦ v are continuous. Hence, by Question 3
(h), we have that (p1 ◦ u) + (p1 ◦ v) is continuous.

By an entirely analogous argument, (p2 ◦ u) + (p2 ◦ v) is continuous. We deduce
by Question 4 (a) that u+ v is continuous.

We now turn to proving that f is continuous. Since the map

I R2
φ

is continuous by Question 9 (c) and Question 7 (b), we deduce by Question 3 (b)
that the map
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I R2

1
2φ

is continuous.

The map

I R2
g

given by t 7→ (14 t, 0) is g′ × 0, where

I R
0

is the constant map t 7→ 0, and

I R
g′

is the map given by t 7→ 1
4 t. By Proposition 2.18 in the Lecture Notes, the map

I R
0

is continuous. By Question 3 (f) and Question 6 (a), the map g′ is continuous.
Thus, by Question 4 (a), we have that g = g′ × 0 is continuous.

We deduce that the map

I R2

1
2φ+ g

is continuous. Since the image of this map is contained in Ak, we deduce by
Question 7 (a) that 1

2φ+ g defines a continuous map

I Ak.

This map is exactly f .
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(d) The map

I2 I
f

given by (x, y) 7→ min{x, y} can be pictured as mapping everything below the diag-
onal horizontally left to the diagonal, and everything above the diagonal vertically
down to the diagonal.

The map

I2 I

given by (x, y) 7→ max{x, y} can be pictured as mapping everything below the
diagonal horizontally right to the right vertical face, and everything above the
diagonal vertically up to the upper horizontal face.

11

Question.

Let R be equipped with its standard topology OR. Prove that a map

R R
f

is continuous in the topological sense if and only if it is continuous in the ε − δ sense
that you have met in real analysis/calculus, namely for all x, c, ε ∈ R with ε > 0 there is
a δ ∈ R with δ > 0 such that if |x− c| < δ then |f(x)− f(c)| < ε.

Hint:

(1) Appeal to Examples 2.9 (1).

(2) Appeal to Question 1 (e).

Solution.

By Examples 2.9 (1) in the lecture notes, {Bε(x)}x∈R,ε∈R,ε>0 defines a basis for (R,OR).
By Question 1 (e) we deduce that f is continuous in the topological sense if and only if
for all x, y, ε ∈ R with ε > 0 such that f(x) ∈ Bε(y) there are y′, δ ∈ R with y′ > 0 such
that x ∈ Bδ(y′) and f

(
Bδ(y

′)
)
⊂ Bε(y).

Suppose first that f is continuous in the topological sense. Taking y to be f(x), we have
that there are y′, δ ∈ R with y′ > 0 such that x ∈ Bδ(y′) and f

(
Bδ(y

′)
)
⊂ Bε

(
f(x)

)
.
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Let δ′ = min{x− (y′ − δ), (y′ + δ)− x}. Then Bδ′(x) ⊂ Bδ(y
′), and hence f

(
Bδ′(x)

)
⊂

Bε
(
f(x)

)
, as required.

Conversely, suppose that f is continuous in the ε-δ sense. Let x, y, ε ∈ R with ε > 0 be
such that f(x) ∈ Bε(y). Let ε′ = min{f(x)−

(
y− ε), (y+ ε)− f(x)}. Then Bε′

(
f(x)

)
⊂

Bε(y). Take c to be x. Since f is continuous in the ε-δ sense, there exists δ ∈ R with
δ > 0 such that f

(
Bδ(x)

)
⊂ Bε′

(
f(x)

)
⊂ Bε(y).

12

Let (X,<) and (Y,<) be pre-orderings. A morphism from (X,<) to (Y,<) is a map

X Y
f

such that if x < x′ then f(x) < f(x′).

Question.

(a) What does this requirement correspond to if we picture (X,<) and (Y,<) via
arrows as in Question 8 of Exercise Sheet 1?

Recall that by Question 10 of Exercise Sheet 2, Alexandroff topologies on a set X
correspond bijectively to pre-orderings on X, in the following way.

(i) Let (X,OX) be an Alexandroff topological space. Given x ∈ X, define Ux to be
the intersection of all neighbourhoods of x in (X,OX). To (X,OX) we associate
the pre-ordering < defined by x < x′ if Ux ⊃ Ux′ .

(ii) Let (X,<) be a pre-ordering. We define a topology OX on X by stipulating that
U ⊂ X belongs to OX if for any x ∈ U and any x′ ∈ X such that x < x′ we have
that x′ ∈ U . We have that (X,OX) is an Alexandroff space.

Question.

(b) Let (X,OX) be an Alexandroff topological space, and let <X denote the corre-
sponding pre-ordering of X. Let (Y,OY ) be another Alexandroff topological space,
and let <Y denote the corresponding pre-ordering.

Prove that a map

X Y
f

is continuous if and only if f defines a morphsm from (X,<X) to (Y,<Y ).
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Solution.

(a) The requirement that if x < x′ then f(x) < f(x′) corresponds to requiring that if
there is an arrow from x to x′ in X, then there is an arrow from f(x) to f(x′) in
Y .

(b) Suppose that f is continuous. Let x, x′ ∈ X be such that x <X x′. By Question
10 (b) of Exercise Sheet 2, we have that {Ux}x∈X defines a basis for (X,OX), and
{Uy}y∈Y defines a basis for (Y,OY ). By Question 1 (e), we deduce that there is
an x′′ ∈ X such that x ∈ Ux′′ and Ux′′ ⊂ f−1(Uf(x)).

By definition of Ux, we have that Ux ⊂ Ux′′ , and hence that Ux ⊂ f−1(Uf(x)).
Moreover, by definition of <X , we have that Ux ⊃ Ux′ . Thus we have that Ux′ ⊂
f−1(Uf(x)). Since x′ ∈ Ux′ , we deduce that f(x′) ∈ Uf(x).

By definition of Uf(x′), we conclude that Uf(x′) ⊂ Uf(x). Thus by definition of <Y
we have that f(x) ≤Y f(x′).

Conversely, suppose that if x, x′ ∈ X have the property that x ≤X x′, then f(x) ≤Y
f(x′). Let x ∈ X, and let U be a neighbourhood of f(x) in (Y,OY ). Then by
definition of Uf(x), we have that Uf(x) ⊂ U .

Let x′ ∈ Ux. Then by definition of Ux′ we have that Ux′ ⊂ Ux, and hence that
x ≤X x′. By assumption, we deduce that f(x) ≤Y f(x′). By definition of <Y , we
then have that Uf(x) ⊃ Uf(x′). Hence Uf(x′) ⊂ U . In particular, since f(x′) ∈ Uf(x′)
we have that f(x′) ∈ U .

This proves that f(Ux) ⊂ U . We have that x ∈ Ux. By Question 1 (b), we conclude
that f is continuous.
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