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Point-set foundations
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1. Monday 6th January

1.1. Definition of a topological space

Definition 1.1.1. Let X be a set, and let O be a set of subsets of X. Then (X,O) is
a topological space if the following hold.

(1) The empty set ∅ belongs to O.

(2) The set X belongs to O.

(3) Let U be a union of (possibly infinitely many) subsets of X which belong to O.
Then U belongs to O.

(4) Let U and U ′ be subsets of X which belong to O. Then U ∩ U ′ belongs to O.

Remark 1.1.2. By induction, the following holds if and only if (4) holds.

(4’) Let J be a finite set, and let {Uj}j∈J be a set of subsets of X such that Uj belongs
to O for all j ∈ J . Then

⋂
j Uj belongs to O.

Terminology 1.1.3. Let (X,O) be a topological space. We refer to O as a topology on
X.

� A set may be able to be equipped with many different topologies! See §1.4.

1.2. Open and closed subsets

Notation 1.2.1. Let X be a set. By A ⊂ X we shall mean that A is a subset of X,
allowing that A may be equal to X. In the past, you may instead have written A ⊆ X.

Terminology 1.2.2. Let (X,O) be a topological space.

(1) Let U be a subset of X. Then U is open with respect to O if U belongs to O.

(2) Let V be a subset of X. Then V is closed with respect to O if X \ V is an open
subset of X with respect to O.
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1. Monday 6th January

1.3. Discrete and indiscrete topologies

Example 1.3.1. We can equip any set X with the following two topologies.

(1) The discrete topology, consisting of all subsets of X. In other words, the power
set of X.

(2) The indiscrete topology, given by {∅, X}.

Remark 1.3.2. By (1) and (2) of Definition 1.1.1, every topology on a set X must
contain both ∅ and X. Thus the indiscrete topology is the smallest topology with which
X may be equipped.

1.4. Finite examples of topological spaces

Example 1.4.1. Let X = {a} be a set with one element. Then X can be equipped
with exactly one topology, given by {∅, X}. In particular, the discrete topology on X is
the same as the indiscrete topology on X.

Remark 1.4.2. The topological space of Example 1.4.1 is important! It is known as
the point.

Example 1.4.3. Let X = {a, b} be a set with two elements. We can define exactly four
topologies upon X.

(1) The discrete topology, given by
{
∅, {a}, {b}, X

}
.

(2) The topology given by
{
∅, {a}, X

}
.

(3) The topology given by
{
∅, {b}, X

}
.

(4) The indiscrete topology, given by
{
∅, X

}
.

Remark 1.4.4. Up to the bijection

X X
f

given by a 7→ b and b 7→ a, or in other words up to relabelling the elements of X, the
topologies of (2) and (3) are the same.

Terminology 1.4.5. The topological space (X,O), where O is the topology of (2) or
(3), is known as the Sierpiński interval, or Sierpiński space.

Remark 1.4.6. In fact (1) – (4) is a list of every possible set of subsets of X which
contains ∅ and X. In other words, every set of subsets of X which contains ∅ and X
defines a topology on X.
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1.5. Open, closed, and half open intervals

Example 1.4.7. Let X = {a, b, c} be a set with three elements. We can equip X with
exactly twenty nine topologies! Up to relabelling, there are exactly nine.

(1) The set

{∅, {b}, {a, b}, {b, c}, X}

defines a topology on X.

(2) The set OX given by

{∅, {a}, {c}, X}

does not define a topology on X. This is because

{a} ∪ {c} = {a, c}

does not belong to OX , so (3) of Definition 1.1.1 is not satisfied.

(3) The set OX given by

{∅, {a, b}, {a, c}, X}

does not define a topology on X. This is because

{a, b} ∩ {a, c} = {a}

does not belong to OX , so (4) of Definition 1.1.1 is not satisfied.

Remark 1.4.8. There are quite a few more ‘non-topologies’ on X.

1.5. Open, closed, and half open intervals

Notation 1.5.1. Let R denote the set of real numbers.

Notation 1.5.2. Let a, b ∈ R.

(1) We denote by ]a, b[ the set

{x ∈ R | a < x < b}.

a b

] [
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1. Monday 6th January

(2) We denote by ]a,∞[ the set

{x ∈ R | x > a}.

a

]

(3) We denote by ]−∞, b[ the set

{x ∈ R | x < b}.

b

[

(4) We sometimes denote R by ]−∞,∞[.

Terminology 1.5.3. We shall refer to any of (1) – (4) in Notation 1.5.2 as an open
interval.

Remark 1.5.4. We shall never use the notation (a, b), (a,∞), (−∞, b), or (−∞,∞) for
an open interval. In particular, for us (a, b) will always mean an ordered pair of real
numbers a and b.

Notation 1.5.5. Let a, b ∈ R. We denote by [a, b] the set

{x ∈ R | a ≤ x ≤ b}.

a b

[ ]

Terminology 1.5.6. We shall refer to [a, b] as a closed interval.

Notation 1.5.7. Let a, b ∈ R.
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1.5. Open, closed, and half open intervals

(1) We denote by [a, b[ the set

{x ∈ R | a ≤ x < b}.

a b

[ [

(2) We denote by ]a, b] the set

{x ∈ R | a < x ≤ b}.

a b

] ]

(3) We denote by [a,∞[ the set

{x ∈ R | x ≥ a}.

a

[

(4) We denote by ]−∞, b] the set

{x ∈ R | x ≤ b}.

b

]

Terminology 1.5.8. We shall refer to any of (1) – (4) of Notation 1.5.7 as a half open
interval.

Terminology 1.5.9. By an interval we shall mean a subset of R which is either an open
interval, a closed interval, or a half open interval.
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1. Monday 6th January

1.6. Standard topology on R

Definition 1.6.1. Let OR denote the set of subsets U of R with the property that, for
every x ∈ U , there is an open interval I such that x ∈ I and I ⊂ U .

Observation 1.6.2. We have that R belongs to OR. Moreover ∅ belongs to OR, since
the required property vacuously holds.

Example 1.6.3. Let U be an open interval ]a, b[.

a b

] [

Then U belongs to OR. For every x ∈ U , we can take the corresponding open interval I
such that x ∈ I and I ⊂ U to be U itself.

� There are infinitely many other possibilities for I. For instance, suppose that U is
the open interval ]−1, 2[. Let x = 1.

−1 21

] [

We can take I to be ]−1, 2[, but also for example
]
0,
√

2
[
.

−1 210
√

2

] [

] [
U

I
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E1. Exercises for Lecture 1

E1.1. Exam questions

Task E1.1.1. Let X = {a, b, c, d}. Which of the following defines a topology on X?

(1) {∅, {a}, {c}, {a, c}, {b, d}, X}

(2) {∅, {a, c}, {d}, {b, d}, {a, c, d}, X}

(3) {∅, {a}, {b, d}, {a, b, d}, {a, c, d}, X}

Task E1.1.2.

(1) Let X be an n× n grid of integer points in R2, where n ∈ N.

Let O be the set of subsets of X which are m×m grids, for 0 ≤ m ≤ n, at the top
right corner. Think of the case m = 0 as the empty set.
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E1. Exercises for Lecture 1

Does (X,O) define a topological space?

(2) Let Y be an (n+ 1)× n grid of integer points in R2.

Let O be the set of subsets of Y which are m×m grids, for 0 ≤ m ≤ n, at the top
right corner. Again, think of the case m = 0 as the empty set.
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E1.1. Exam questions

Does (Y,O) define a topological space?

(3) Let X be as in (1). Suppose that n ≥ 3. Let O′ be the union of the following sets
of subsets of X.

(a) O.

(b) The set of subsets of X which are m×m grids, for 0 ≤ m ≤ n, at the bottom
left corner.

(c) Unions of subsets of X of the kind considered in (a) and (b). For instance,
the union of a 3× 3 grid at the bottom left corner, and a 2× 2 grid at the top
right corner.

Does (X,O′) define a topological space?

Task E1.1.3 (Continuation Exam, August 2013). Let X denote the set

([0, 1]× ]0,∞]) ∪ (]0,∞]× [0, 1]) .
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E1. Exercises for Lecture 1

Let O be the union of {∅, X}, the set

{[0, 1]× [0, n] | n ∈ N}

and the set

{[0, n]× [0, 1] | n ∈ N} .

Is (X,O) a topological space?

E1.2. In the lecture notes

Task E1.2.1. Let X be a set.

(1) Verify that conditions (1) – (4) of Definition 1.1.1 are satisfied by the discrete
topology on X.

(2) Verify that conditions (1) – (4) of Definition 1.1.1 are satisfied by the indiscrete
topology on X.

Task E1.2.2.

(1) Check that you agree that (1) of Example 1.4.3 is the discrete topology.
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E1.3. For a deeper understanding

(2) Verify that (2) and (3) of Example 1.4.3 define topologies.

Task E1.2.3.

(1) Verify that (1) of Example 1.4.7 defines a topology.

(2) Can you find the nine different topologies, up to relabelling, on a set with three
elements?

(3) Find four examples of non-topologies on a set with three elements, in addition to
(2) and (3) of Example 1.4.7.

E1.3. For a deeper understanding

Task E1.3.1. Let X be a set. Let C be a set of subsets of X such that the following
hold.

(1) The empty set ∅ belongs to C.

(2) The set X belongs to C.

(3) Let V be an intersection of (possibly infinitely many) subsets of X which belong
to C. Then V belongs to C.

(4) Let V and V ′ be subsets of X which belong to C. Then V ∪ V ′ belongs to C.

Let O be given by

{X \ V | V belongs to C} .

Prove that (X,O) is a topological space.

Remark E1.3.2. Conversely, let (X,O) be a topological space. Let C denote the set of
closed subsets of X. Then C satisfies (1) – (4) of Task E1.3.1.

Task E1.3.3 (Longer). Let I be a subset of R. Prove that I is an interval if and only
if it has the following property: if x < y < x′ for x, x′ ∈ I and y ∈ R, then y ∈ I. For
proving that I is an interval if this condition is satisfied, you may wish to proceed as
follows.

(1) Suppose that I is bounded. Denote the greatest lower bound of I by a, and denote
the least upper bound of I by b. Prove that if a < y < b, then y ∈ I.

(2) Using this, deduce that I is ]a, b[, [a, b], [a, b[, or ]a, b].

(3) Give a proof when I is not bounded.
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E1. Exercises for Lecture 1

Remark E1.3.4. Task E1.3.3 relies crucially on the existence of a least upper bound
for a subset of R which is bounded above, and on the existence of a greatest lower bound
for a subset of R which is bounded below. This is known as the completeness of R.

We shall demonstrate in later lectures that (R,OR) has important properties. To use
a couple of terms which we shall define later, it is connected and locally compact. The
proofs ultimately rest upon the completeness of R, via Task E1.3.3.

Task E1.3.5. Let I0 and I1 be intervals. Prove that I0 ∩ I1 is an interval. You may
wish to appeal to Task E1.3.3.

E1.4. Exploration — Alexandroff topological spaces

Definition E1.4.1. Let X be a set, and let X♦X denote the set of ordered pairs (x0, x1)
of X such that x0 is not equal to x1. A pre-order on X is the data of a map

X♦X {0, 1},
χ

or, in other words, for every ordered pair (x0, x1) of distinct elements of X, an element
of the set {0, 1}. We require that for any ordered triple (x0, x1, x2) of mutually distinct
elements of X, such that χ(x0, x1) = 1 and χ(x1, x2) = 1, we have that χ(x0, x2) = 1.

Terminology E1.4.2. There is an arrow from x0 to x1 if χ(x0, x1) = 1. We depict this
as follows.

x0 x1

Example E1.4.3. Let X = {0, 1}. There are four pre-orders on X, pictured below.

0 1 0 1 0 1 0 1

The rightmost diagram should be interpreted as: χ(0, 1) = 0 and χ(1, 0) = 0.

Example E1.4.4. Let X = {0, 1, 2}. There are 29 pre-orders on X. A few are pictured
below.

0 1 0 1 0 1 0 1

2 2 2 2

0 1 0 1 0 1

2 2 2
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E1.4. Exploration — Alexandroff topological spaces

Example E1.4.5. The following are not examples of pre-orders on X.

0 1 0 1 0 1

2 2 2

Task E1.4.6. Why do the diagrams of Example E1.4.5 not define pre-orders.?

Example E1.4.7. The following defines a pre-order on N.

1 2 3 4 5 6 7

Notation E1.4.8. Let X be a set, and let χ be a pre-order on X. For any pair (x0, x1)
of elements of X, we write x0 < x1 if eiher there is an arrow from x0 to x1 or x0 = x1.

Definition E1.4.9. Let O< denote the set of subsets U of X with the property that if
x ∈ U and x′ has the property that x < x′, then x′ ∈ U .

Task E1.4.10. Prove that (X,O<) is a topological space.

Task E1.4.11. Which of the four pre-orders of Example E1.4.3 corresponds to the
topology defining the Sierpiński interval? Which corresponds to the discrete topology?
Which to the indiscrete topology?

Task E1.4.12. Find a pre-order on X = {a, b, c} which corresponds to the topology O
on X given by

{∅, {b}, {a, b}, {b, c}, X} .

Task E1.4.13. List all the subsets of X = {a, b, c, d} which belong to the topology O
on X corresponding to the following pre-order.

a

b c

d

The topological space (X,O) is sometimes known as the pseudo-circle.

Task E1.4.14. Let (X,<) be a set equipped with a pre-order, and let O< denote the
corresponding topology on X. Prove that, for any set {Uj}j∈J of subsets of X belonging
to OX , we have that

⋂
j∈J Uj belongs to O<. In particular, this holds even if J is infinite.
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E1. Exercises for Lecture 1

Remark E1.4.15. In other words, (X,O<) is an Alexandroff topological space.

Notation E1.4.16. Let (X,O) be an Alexandroff topological space. For any x ∈ X,
let Ux denote the intersection of all subsets of X which contain x and which belong to
O.

Definition E1.4.17. Let (X,O) be an Alexandroff topological space. For any x0, x1 ∈
X, define x0 < x1 if Ux1 ⊂ Ux0 .

Task E1.4.18. Prove that < defines a pre-order on X.

Task E1.4.19. Let X = {a, b, c, d, e}, and let O denote the topology on X given by

{∅, {a, b}, {c}, {d, e}, {a, b, c}, {c, d, e}, {a, b, d, e}, X} .

Draw the pre-order corresponding to (X,O).

E1.5. Exploration — Zariski topologies

Notation E1.5.1. Let Z denote the set of integers.

Notation E1.5.2. Let Spec(Z) denote the set of prime numbers.

Notation E1.5.3. For any integer n, let V (n) denote the set

{p ∈ Z | p is prime, and p | n} .

Definition E1.5.4. Let O denote the set

{Spec(Z) \ V (n) | n ∈ Z} .

Task E1.5.5. Prove that (Spec(Z),O) is a topological space. You may wish to make
use of Task E1.3.1.

Terminology E1.5.6. The topology O on Spec(Z) is known as the Zariski topology.

Remark E1.5.7 (Ignore if you have not met the notion of a ring before). Generalising
this, one can define a topology on the set of prime ideals of any commutative ring. This
is a point of departure for algebraic geometry.
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