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13 Monday 17th February

13.1 Hausdorff topological spaces

Definition 13.1.1. A topological space (X,OX) is Hausdorff if, for all x0 and x1 which
belong to X such that x0 6= x1, there is a neighbourhood U0 of x0 in X with respect to
OX , and a neighbourhood U1 of x1 in X with respect to OX , such that U0∩U1 is empty.

x0

x1

X

U0

U1

13.2 Examples and non-examples of Hausdorff topological
spaces

Example 13.2.1. Suppose that x0 and x1 belong to R, and that x0 6= x1. Relabelling
x0 and x1 if necessary, we may assume that x0 < x1.

x0 x1

Lety be a real number such that x0 < y < x1. The following hold.

(1) We have that x0 belongs to ]−∞, y[.

(2) We have that x1 belongs to ]y,∞[.

(3) We have that ]−∞, y[ ∩ ]y,∞[ is empty.
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x0 x1y

[

]

Both ]−∞, y[ and ]y,∞[ belong to OR. To verify this is the topic of Task E13.2.1. We
conclude that (R,OR) is Hausdorff.

Example 13.2.2. Let X be a set. Let Oindisc
X be the indiscrete topology on X. Suppose

that x0 and x1 belong to X, and that x0 6= x1. The only neighbourhood of x0 in X with
respect to Oindisc

X is X, and x1 belongs to X. Thus there is no neighbourhood of x0 in
X with respect to Oindisc

X which does not contain x1. In particular, (X,Oindisc
X ) is not

Hausdorff.

Example 13.2.3. Let X be a set. Let Odisc
X be the discrete topology on X. Suppose

that x0 and x1 belong to X, and that x0 6= x1. The following hold.

(1) We have that {x0} belongs to Odisc
X .

(2) We have that {x1} belongs to Odisc
X .

(3) We have that {x0} ∩ {x1} is empty.

We conclude that (X,Odisc
X ) is Hausdorff.

Example 13.2.4. Let X be the set {a, b, c}. Let OX be the topology on X given by

{∅, {a}, {a, b}, {a, c}X} .

Every neighbourhood of b in X with respect to OX also contains c. Thus (X,OX) is not
Hausdorff.

Example 13.2.5. Let X be the set {a, b, c}. Let OX be the topology on X given by

{∅, {a}, {c}, {a, b}, {a, c}, X} .

Every neighbourhood of b in X with respect to OX also contains a. Thus (X,OX) is
not Hausdorff.

Remark 13.2.6. Let (X,OX) be a topological space. Suppose that X is finite, or more
generally that OX is finite. Then (X,OX) is Hausdorff if and only if OX is the discrete
topology. This is Corollary E13.3.7.

Example 13.2.7. Let O be the topology on R2 given by

{U × R | U belongs to OR} .

To verify that O defines a topology is Task E13.2.2. Suppose that x0 and x1 belong to
R, and that x0 6= x1. Let W be a neighbourhood of (0, x0) in X with respect to O.
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13.3 Canonical methods to prove that a topological space is Hausdorff

By definition of O, there is a neighbourhood U of 0 in R with respect to OR such that
W = U × R. By definition of OR, there is an open interval ]a, b[ with a < 0 < b such
that ]a, b[ is a subset of U . Thus ]a, b[× R is a subset of W .

0a b

We have that (0, x1) belongs to ]a, b[× R. Thus (0, x1) belongs to W .

We have demonstrated that every neighbourhood of (0, x0) in R2 with respect to O
contains (0, x1). We conclude that (R2,O) is not Hausdorff.

13.3 Canonical methods to prove that a topological space is
Hausdorff

Proposition 13.3.1. Let (X,OX) be a Hausdorff topological space. Let A be a subset
of X. Let OA be the subspace topology on A with respect to (X,OX). Then (A,OA) is
Hausdorff.

Proof. Suppose that a0 and a1 belong to A, and that a0 6= a1. Since (X,OX) is Haus-
dorff, there is a neighbourhood U0 of a0 in X with respect to OX , and a neighbourhood
U1 of a1 in X with respect to OX , such that U0 ∩ U1 is empty. The following hold.

(1) By definition of OA, we have that A ∩ U0 belongs to OA. Thus A ∩ U0 is a
neighbourhood of a0 in A with respect to OA.

(2) By definition of OA, we have that A ∩ U1 belongs to OA. Thus A ∩ U1 is a
neighbourhood of a1 in A with respect to OA.
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(3) We have that (A ∩ U0) ∩ (A ∩ U1) is a subset of U0 ∩ U1. Since U0 ∩ U1 is empty,
we deduce that (A ∩ U0) ∩ (A ∩ U1) is empty.

We conclude that (A,OA) is Hausdorff.

Example 13.3.2. By Example 13.2.1, we have that (R,OR) is Hausdorff. By Proposi-
tion 13.3.1, we deduce that (I,OI) is Hausdorff.

Proposition 13.3.3. Let (X,OX) and (Y,OY ) be Hausdorff topological spaces. Then
(X × Y,OX×Y ) is Hausdorff.

Proof. Suppose that (x0, y0) and (x1, y1) belong to X × Y , and that (x0, y0) 6= (x1, y1).
Then either x0 6= x1 or y0 6= y1, or both x0 6= x1 and y0 6= y1.

Suppose that x0 6= x1. Since (X,OX) is Hausdorff, there is a neighbourhood UX0 of
x0 in X with respect to OX , and a neighbourhood UX1 of x1 in X with respect to OX ,
such that UX0 ∩ UX1 is empty. The following hold.

(1) We have that UX0 × Y belongs to OX×Y . Thus UX0 × Y is a neighbourhood of
(x0, y0) in X × Y with respect to OX×Y .

(2) We have that UX1 × Y belongs to OX×Y . Thus UX1 × Y is a neighbourhood of
(x1, y1) in X × Y with respect to OX×Y .

(3) We have that (UX0 × Y )∩ (UX1 × Y ) = (UX0 ∩UX1 )× Y . Since UX0 ∩UX1 is empty,
we deduce that (UX0 × Y ) ∩ (UX1 × Y ) is empty.

Suppose instead that y0 6= y1. By an analogous argument, there is a neighbourhood UY0
of y0 in Y with respect to OY , and a neighbourhood UY1 of y1 in Y with respect to OY ,
such that the following hold.

(1 bis) We have that X ×UY0 is a neighbourhood of (x0, y0) in X ×Y with respect to
OX×Y .

(2 bis) We have that X ×UY1 is a neighbourhood of (x1, y1) in X ×Y with respect to
OX×Y .

(3 bis) We have that (X × UY0 ) ∩ (X × UY1 ) is empty.

We conclude that (X × Y,OX×Y ) is Hausdorff.

Example 13.3.4. By Example 13.2.1, we have that (R,OR) is Hausdorff. By Proposi-
tion 13.3.3, we deduce that (Rn,ORn) is Hausdorff, for any n ≥ 1.

Example 13.3.5. By Example 13.3.2, we have that (I,OI) is Hausdorff. By Proposition
13.3.3, we deduce that (I2,OI2) is Hausdorff.

Alternatively, by Example 13.3.4 we have that (R2,OR2) is Hausdorff. We can deduce
from this that (I2,OI2) is Hausdorff by Proposition 13.3.1.
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13.3 Canonical methods to prove that a topological space is Hausdorff

Example 13.3.6. By Example 13.3.4 we have that (R2,OR2) is Hausdorff. By Propo-
sition 13.3.1, we deduce that (S1,OS1) is Hausdorff.

Proposition 13.3.7. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that
(X,OX) is Hausdorff. Let

X Y
f

be a bijection. Suppose that f is open, in the sense of Definition E7.1.15. Then (Y,OY )
is Hausdorff.

Proof. Since f is a bijection, there is a map

Y X
g

such that g ◦ f = idX and f ◦ g = idY . Suppose that y0 and y1 belong to Y , and that
y0 6= y1. Since y0 6= y1, we have that g(y0) 6= g(y1). To check that you understand this
is the topic of Task E13.2.3 (1).

Since (X,OX) is Hausdorff, there is a neighbourhood U0 of g(y0) in X with respect
to OX , and a neighbourhood U1 of g(y1) in X with respect to OX , such that U0 ∩ U1 is
empty. The following hold.

(1) Since U0 ∩U1 is empty, we have that f(U0)∩ f(U1) is empty. To verify this is the
topic of Task E13.2.3 (2).

(2) Since f is open, we have that f(U0) belongs to OY . Since f ◦ g = idY , we have
that f (g(y0)) = y0. Thus we have that f(U0) is a neighbourhood of y0 in Y with
respect to OY .

(3) Since f is open, we have that f(U1) belongs to OY . Since f ◦ g = idY , we have
that f (g(y1)) = y1. Thus we have that f(U1) is a neighbourhood of y1 in Y with
respect to OY .

We conclude that (Y,OY ) is Hausdorff.

Corollary 13.3.8. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that
(X,OX) is Hausdorff. Suppose that (X,OX) and (Y,OY ) are homeomorphic. Then
(Y,OY ) is Hausdorff.

Proof. Follows immediately from Proposition 13.3.7 since, by Task E7.3.1, a homeomor-
phism is in particular bijective and open.

Example 13.3.9. By Example 13.3.5, we have that (I2,OI2) is Hausdorff. By Task
E7.2.9, there is a homeomorphism

I2 D2.
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By Corollary 13.3.8, we deduce that (D2,OD2) is Hausdorff.

Alternatively, by Example 13.3.4 we have that (R2,OR2) is Hausdorff. We can thus
deduce from Proposition 13.3.1 that (D2,OD2) is Hausdorff.

13.4 Example of a quotient of a Hausdorff topological space
which is not Hausdorff

Example 13.4.1. Let X be the subset of R2 given by the union of R×{0} and R×{1}.

R× {1}

R× {0}

Let OX be the subspace topology on X with respect to (R2,OR2). By Example 13.3.4,
we have that (R2,OR2) is Hausdorff. By Proposition 13.3.1, we deduce that (X,OX) is
Hausdorff.

Let ∼ be the equivalence relation on X generated by (x, 0) ∼ (x, 1), for all x ∈ R such
that x 6= 0.

R× {1}

R× {0}

(0, 1)

(0, 0)

We shall demonstrate that (X/∼,OX/∼) is not Hausdorff. Let

X X/∼π

be the quotient map. Let U0 be a neighbourhood of π ((0, 0)) in X/∼ with respect to
OX/∼. Let U1 be a neighbourhood of π ((0, 1)) in X/∼ with respect to OX/∼.

By definition of OX/∼, we have that π−1(U0) belongs to OX . By definition of OX
and OR2 , we deduce that there is an open interval ]a0, b0[, with a0 < 0 < b0, such that
]a0, b0[ × {0} is a subset of π−1(U0). To check that you understand this is the topic of
Task E13.2.4.
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13.4 Example of a quotient of a Hausdorff topological space which is not Hausdorff

R× {1}

R× {0}

(0, 1)

(0, 1)

] [

(a0, 0) (b0, 0)

By an analogous argument, there is an open interval ]a1, b1[, with a1 < 0 < b1, such that
]a1, b1[× {1} is a subset of π−1(U1).

R× {1}

R× {0}

(0, 1)

(0, 1)

] [

(a1, 1) (b1, 1)

The following hold.

(1) We have that ]max{a0, a1},min{b0, b1}[× {0} is a subset of π−1(U0).

(2) We have that ]max{a0, a1},min{b0, b1}[× {1} is a subset of π−1(U1).

R× {1}

R× {0}

(0, 1)

(0, 1)

] [

(max{a0, a1}, 1) (min{b0, b1}, 1)

] [

(max{a0, a1}, 0) (min{b0, b1}, 0)

We deduce that

π ((]max(a0, a1),min(b0, b1)[ \ {0})× {0})

is a subset of both U0 and U1. In particular, U0 ∩ U1 is not empty. We conclude that
(X/∼,OX/∼) is not Hausdorff.

Remark 13.4.2. The topological space (X/∼,OX/∼) is sometimes known as the real
line with two origins.
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Remark 13.4.3. Example 13.4.1 demonstrates that a quotient of a Hausdorff topolog-
ical space is not necessarily Hausdorff. Thus we do not yet have a ‘canonical method’
to prove that (M2,OM2), (K2,OK2), and our other examples of quotients of topological
spaces, are Hausdorff.

We shall see later that if (X,OX) and ∼ satisfy certain conditions, then (X/∼,OX/∼)
can be proven by a ‘canonical method’ to be Hausdorff.

Remark 13.4.4. We can intuitively believe that a quotient of a Hausdorff topological
space might not be Hausdorff. In a Hausdorff topological space, every two points can be
‘separated’ by subsets belonging to the topology: the points are ‘not too close together’.

When we take a quotient, however, we may identify many points. Thus points which
were not ‘close together’ before taking the quotient may be ‘close together’ afterwards.
So much so that we may no longer be able to ‘separate’ every two points.
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E13 Exercises for Lecture 13

E13.1 Exam questions

Task E13.1.1. Let X = {a, b, c, d} be a set with four elements. Let OX be the topology
on X given by

{∅, {a}, {c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, X} .

Demonstrate that (X,OX) is not Hausdorff.

Task E13.1.2. Prove that the Sorgenfrey line of Task E11.1.12 is Hausdorff.

Task E13.1.3. Let O be the topology on I2 given by the set of subsets U of I2 such
that, for every x which belongs to U , we have either that x = 0, or else that one of the
following holds.

(1) We have that x belongs to [0, y[× [0, y[ for some 0 < y < 1
2 , and this set is a subset

of U .

(2) We have that x belongs to [0, y[× ]1− y, 1] for some 0 < y < 1
2 , and this set is a

subset of U .

(3) We have that x belongs to ]1− y, 1]× [0, y[ for some 0 < y < 1
2 , and this set is a

subset of U .
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(4) We have that x belongs to ]1− y, 1] × ]1− y, 1] for some 0 < y < 1
2 , and this set

is a subset of U .

Is (I2,O) homeomorphic to (I2,OI2)?

Task E13.1.4. Prove that (T 2,OT 2) is Hausdorff.

Remark E13.1.1. The intention in Task E13.1.4 is for you to give a proof from first
principles. In a later lecture, we shall see how to prove that (T 2,OT 2) is Hausdorff by a
‘canonical method’.

It is also possible to give a proof by appealing to Corollary 13.3.8 and the fact, dis-
cussed in Example 8.1.4, that (T 2,OT 2) is homeomorphic to (S1 × S1,OS1×S1). Since
(S1,OS1) is Hausdorff by Example 13.3.6, we have that (S1 × S1,OS1×S1) is Hausdorff
by Proposition 13.3.3.

E13.2 In the lecture notes

Task E13.2.1. Suppose that x belongs to R. Prove that ]−∞, x[ and ]x,∞[ belong to
OR.

Task E13.2.2. Prove that the set O of Example 13.2.7 defines a topology on R2.

Task E13.2.3. Let X and Y be sets, and let

X Y
f
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E13.3 For a deeper understanding

be a bijection. Thus there is a map

Y X
g

such that g ◦ f = idX and f ◦ g = idY .

(1) Suppose that y0 and y1 belong to Y , and that y0 6= y1. Prove that g(y0) 6= g(y1).
You may wish to appeal to the fact that f ◦ g = idY .

(2) Suppose that U0 and U1 are subsets of X, and that U0 ∩ U1 is empty. Prove that
f(U0) ∩ f(U1) is empty. You may wish to appeal to the fact that g ◦ f = idX .

Task E13.2.4. In the notation of Example 13.4.1, prove that, for any neighbourhood U
of π ((0, 0)) in X/∼ with respect to OX/∼, there is an open interval ]a, b[ with a < 0 < b
such that ]a, b[× {0} is a subset of π−1(U).

E13.3 For a deeper understanding

Task E13.3.1. Let (X,OX) be a Hausdorff topological space. Let O′X be a topology
on X such that OX is a subset of O′X . Prove that (X,O′X) is Hausdorff.

Definition E13.3.2. A topological space (X,OX) is T1 if, for every ordered pair (x0, x1)
such that x0 and x1 belong to X and x0 6= x1, there is a neighbourhood of x0 in X with
respect to OX which does not contain x1.

x0

x1

X

Remark E13.3.3. . Suppose that (X,OX) is a Hausdorff topological space. Then
(X,OX) is a T1 topological space.

Task E13.3.4. Let (X,OX) be a topological space. Suppose that x belongs to X. Prove
that {x} is closed in X with respect to OX if and only if (X,OX) is a T1 topological
space. You may wish to proceed as follows.
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(1) Suppose that (X,OX) is a T1 topological space. Suppose that y belongs to X,
and that x 6= y. Since (X,OX) is a T1 topological space, there is a neighbourhood
Uy of y in X with respect to OX such that x does not belong to Uy. Deduce that y
is not a limit point of {x} in X with respect to OX .

(2) By Proposition 9.1.1, deduce from (1) that {x} is closed in X with respect to OX ..

(3) Suppose instead that {x} is closed in X with respect to OX for every x which
belongs to X. Suppose that x0 and x1 belong to X, and that x0 6= x1. Since {x0}
is closed in X with respect to OX , observe have that X \ {x1} belongs to OX .

(4) Moreover, observe that x0 belongs to X \ {x1}. Conclude that (X,OX) is T1.

Corollary E13.3.5. Let (X,OX) be a Hausdorff topological space. Suppose that x
belongs to X. Then {x} is closed in X with respect to OX .

Proof. Follows immediately from Task E13.3.4 and Remark E13.3.3.

Task E13.3.6. Let (X,OX) be a T1 topological space. Suppose that OX is finite. Prove
that OX is the discrete topology on X. You may wish to proceed as follows.

(1) Suppose that x belongs to X. Since (X,OX) is T1, there is, for every y which
belongs to X such that x 6= y, a neighbourhood Uy of x in X with respect to OX
such that y does not belong to Uy. Observe that⋂

y∈Y \{x}

Uy

is {x}.

(2) Since OX is finite, observe that ⋂
y∈Y \{x}

Uy

belongs to OX .

(3) Deduce that {x} belongs to OX . Conclude that OX is the discrete topology on
X.

Corollary E13.3.7. Let (X,OX) be a Hausdorff topological space. Suppose that OX
is finite. Then OX is the discrete topology on X.

Proof. Follows immediately from Task E13.3.6 and Remark E13.3.3.

Task E13.3.8. Let (X/∼,OX/∼) be the real line with two origins of Example 13.4.1.
Prove that (X/∼,OX/∼) is T1. You may wish to appeal to the fact that for any open
interval ]a, b[ such that a < 0 < b, we have that π (]a, b[× {0}) belongs to OX/∼, but
does not contain π ((0, 1)).

Remark E13.3.9. Example 13.4.1 and Task E13.3.8 demonstrate that a T1 topological
space is not necessarily Hausdorff.
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E13.4 Exploration — Hausdorffness for metric spaces

E13.4 Exploration — Hausdorffness for metric spaces

Definition E13.4.1. Let X be a set. A metric d on X is separating if, for any x0 and
x1 which belong to X with the property that d(x0, x1) = 0, we have that x0 = x1.

Definition E13.4.2. A metric space (X, d) is separated if d is separating.

Task E13.4.3. Let (X, d) be a separated, symmetric metric space. Let Od be the
topology on X corresponding to d of Task E3.4.9. Prove that (X,Od) is Hausdorff. You
may wish to proceed as follows.

(1) Suppose that x0 and x1 belong to X, and that x0 6= x1. Since (X, d) is separated,
deduce that d(x0, x1) > 0.

(2) Let ε = d(x0,x1)
2 . Appealing to Task E4.3.2, observe that Bε(x0) is a neighbourhood

of x0 in X with respect to Od, and that Bε(x1) is a neighbourhood of x1 in X with
respect to Od-

(3) Suppose that y belongs to Bε(x0). By definition of d, we have that

d(x0, x1) ≤ d(x0, y) + d(y, x1)

< d(x0,x1)
2 + d(y, x1).

Thus we have that
d(y, x1) >

d(x0,x1)
2 .

Since (X, d) is symmetric, deduce that

d(x1, y) > d(x0,x1)
2 .

(4) Deduce from (3) that y does not belong to Bε(x1), and thus that Bε(x0)∩Bε(x1)
is empty.

(5) Conclude from (2) and (4) that (X, d) is Hausdorff.

x0

x1

ε

ε
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Definition E13.4.4. A topological space (X,OX) is perfectly normal if, for every or-
dered pair of subsets A0 and A1 of subsets of X which are closed in X with respect to
OX , which have the property that A0 ∩ A1 is empty, and which are both not empty,
there is a continuous map

X I
f

such that f−1 ({0}) = A0 and f−1 ({1}) = A1.

Task E13.4.5. Let (X,OX) be a perfectly normal topological space. Prove that (X,OX)
is Hausdorff. You may wish to appeal to Corollary E13.3.5.

Task E13.4.6. Let (X, d) be a separated, symmetric metric space. Let Od be the
topology on X corresponding to d of Task E3.4.9. Prove that (X,Od) is perfectly normal.
You may wish to proceed as follows.

(1) Since A0 ∩ A1 is empty, deduce, by Task E9.4.2, that d(x,A0) + d(x,A1) > 0 for
every x which belongs to X.

(2) Since (X, d) is symmetric, we have by Task E4.3.8 that the map

X R
d(−, A0)

given by x 7→ d(x,A0) is continuous, and that the map

X R
d(−, A1)

given by x 7→ d(x,A1) is continuous. By (1), Task E5.3.6, Task E5.3.10, and Task
E5.1.9, deduce that the map

X I
f

given by x 7→ d(x,A0)
d(x,A0)+d(x,A1)

is continuous.

(3) By Remark E4.3.1 and Task E9.4.2, observe that f−1 ({0}) = A0, and that
f−1 ({1}) = A1.

(4) Conclude from (2) and (3) that (X, d) is perfectly normal.

Remark E13.4.1. Task E13.4.6 and Task E13.4.5 give a second proof that the topo-
logical space arising from every metric space is Hausdorff.
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