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6 Tuesday 21st January

6.1 Quotient topologies

Notation 6.1.1. Let X be a set, and let ∼ be an equivalence relation on X. We denote
by X/∼ the set

{[x] | x ∈ X}

of equivalence classes of X with respect to ∼.

Notation 6.1.2. We denote by

X X/∼π

the map given by x 7→ [x].

Terminology 6.1.3. We refer to π as the quotient map with respect to ∼.

Definition 6.1.4. Let (X,OX) be a topological space. and let ∼ be an equivalence
relation on X. Let OX/∼ denote the set of subsets U of X/∼ such that π−1(U) belongs
to OX .

Proposition 6.1.5. Let (X,OX) be a topological space, and let ∼ be an equivalence
relation on X. Then (X/∼,OX/∼) is a topological space.

Proof. We verify that each of the conditions of Definition 1.1.1 holds.

(1) We have that π−1(∅) = ∅. Since OX is a topology on X, we have that ∅ belongs
to OX . Thus ∅ belongs to OX/∼.

(2) We have that π−1(X/∼) = X. Since OX is a topology on X, we have that X
belongs to OX . Thus X belongs to OX .

(3) Let {Ui} be a set of (possibly infinitely many) subsets of X/∼ which belong to
OX/∼. By definition of OX/∼, we have that π−1(Ui) belongs to OX . Since OX is a
topology on X, we deduce that

⋃
i∈I π

−1(Ui) belongs to OX . We have that

π−1

(⋃
i∈I

Ui

)
=
⋃
i∈I

π−1(Ui).

Thus π−1
(⋃

i∈I Ui

)
belongs to OX . We conclude that

⋃
i∈I Ui belongs to OX/∼.
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6 Tuesday 21st January

(4) Let U0 and U1 be subsets of X/∼ which belong to OX/∼. By definition of OX/∼,
we have that π−1(U0) and π−1(U1) belong to OX . Since OX is a topology on X,
we deduce that π−1(U0) ∩ π−1(U1) belongs to OX . We have that

π−1 (U0 ∩ U1) = π−1(U0) ∩ π−1(U1).

Thus π−1 (U0 ∩ U1) belongs to OX . We conclude that U0 ∩ U1 belongs to OX/∼.

Remark 6.1.6. The proof of Proposition 6.1.5 does not appeal to anything specific to
X/∼ or to π. It relies only upon properties of π−1 which hold for any map.

Remark 6.1.7. Although we chose not to, it is possible to define the subspace and
product topologies in a similar way. To investigate this is the topic of Task E6.2.1 and
Task E6.2.2.

Terminology 6.1.8. Let (X,OX) be a topological space, and let ∼ be an equivalence
relation on X. We refer to OX/∼ as the quotient topology upon X/∼.

Remark 6.1.9. Let (X,OX) be a topological space, and let ∼ be an equivalence relation
on X. Let X/∼ be equipped with the quotient topology OX/∼. Then

X X/ ∼π

is continuous. This is immediate from the definition of OX/∼.

Remark 6.1.10. This introduces us to a more conceptual way to understand the defi-
nition of a subspace topology and of a product topology. The subspace topology ensures
exactly that an inclusion map is continuous. The product topology ensures exactly that
the projection maps are continuous. This is a consequence of Task E6.2.1 and Task
E6.2.2.

6.2 Finite example of a quotient topology

Example 6.2.1. Let X = {a, b, c} be a set with three elements. Let OX be the topology
on X given by

{∅, {a}, {c}, {a, b}, {a, c}, X} .
Let ∼ be the equivalence relation on X generated by a ∼ c. Then

X/∼ =
{
a′, b′

}
,

where a′ = [a] = [c] and b′ = [b]. The map

X X/∼π

is given by a 7→ a′, b 7→ b′, and c 7→ a′. In order to determine which subsets ofX/∼ belong
to OX/∼, we have to calculate their inverse images under π. We know from Proposition
6.1.5 that and ∅ and X/∼ belong to OX/∼. Thus only the following calculations remain.
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6.3 The quotient topology obtained by glueing together the endpoints of I

(1) We have that π−1 ({a′}) = {a, c}. Since {a, c} belongs to OX , we deduce that
{a′} belongs to OX/∼.

(2) We have that π−1 ({b′}) = {b}. Since {b} does not belong to OX , we deduce that
{b′} does not belong to OX/∼.

We conclude that
OX/∼ =

{
∅, {a′}, X

}
.

Remark 6.2.2. Throughout the course, we shall make use the notion of an equivalence
relation generated by a relation. A formal discussion can be found in A.4. However, you
can harmlessly ignore it!

The relations that we shall consider express all that is important about our equivalence
relations: which elements are to be identified with which, when we pass to X/∼. For
instance, in Example 6.2.1, the relation a ∼ c expresses that a is to be identified with c
when we pass to X/∼, and that no other identifications are to be made.

Formally, in order to construct X/∼, we have to ensure that the conditions of Defini-
tion A.4.3 are satisfied. It is this that we achieve by passing to the equivalence relation
generated by a relation. In full detail, the equivalence relation generated by a ∼ c is
given by a ∼ a, b ∼ b, c ∼ c, a ∼ c, and c ∼ a.

In all the examples which we shall consider, it is entirely straightforward to write
down the equivalence relation generated by our relation. Since this would be tedious,
and would not lend any insight into the corresponding quotient topology, we shall not
do so.

6.3 The quotient topology obtained by glueing together the
endpoints of I

Example 6.3.1. Let ∼ be the equivalence relation on I generated by 0 ∼ 1.

0 1

Then I/∼ is obtained by ‘glueing 0 to 1’. We may picture it as follows.

[0] = [1]
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6 Tuesday 21st January

Remark 6.3.2. Let U be the subset of I/∼ given by{
[t] | 14 < t < 5

12

}
.

[0] = [1]

(

)

U

Then π−1(U) is the open interval
]
1
4 ,

5
12

[
.

( )

1
4

5
12

π−1(U)

0 1

In particular, as in Example 2.3.3, we have that π−1(U) belongs to OI . Thus U belongs
to OI/∼.

Remark 6.3.3. Let U be the subset of I/∼ given by{
[t] | 0 ≤ t < 1

8

}
∪
{

[t] | 78 < t ≤ 1
}
.

In particular, we have that [0] = [1] ∈ U .

[0] = [1](
)

U

Then π−1(U) is
[
0, 18
[
∪
]
7
8 , 1
]
.
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6.3 The quotient topology obtained by glueing together the endpoints of I

[ ) ( ]

0 11
8

7
8

As in Example 2.3.4, we have that
[
0, 18
[

belongs to OI . As in Example 2.3.5, we have
that

]
7
8 , 1
]

belongs to OI . Thus π−1(U) belongs to OI . We conclude that U belongs to
OI/∼.

Remark 6.3.4. Let U be the subset of I/∼ given by{
[t] | 78 < t ≤ 1

}
.

[0] = [1]

[

)

U

Then π−1(U) is {0} ∪
]
7
8 , 1
]
.

( ]

0 17
8

The subset {0} ∪
]
7
8 , 1
]

of I does not belong to OI . Thus U does not belong to OI/∼.

� Let (X,OX) be a topological space, and let ∼ be an equivalence relation on X. Let
U be a subset of X which belongs to OX . Then π(U) does not necessarily belong

to OX/∼. The crucial point is that π−1 (π (U)) is not necessarily equal to U . Remark
6.3.4 demonstrates this, for we have the following.

(1) The subset U of I/∼ considered in Remark 6.3.4 is π
(]

7
12 , 1

])
.

(2) As in Example 2.3.5, we have that
]
7
8 , 1
]

belongs to OI .

(3) We have that π
(]

7
12 , 1

])
does not belong to OI/∼. In particular

π−1
(
π
(]

7
12 , 1

]))
= {0} ∪

]
7
8 , 1
]
,

which is not equal to
]
7
8 , 1
]
.

Remark 6.3.5. It is not a coincidence that we have depicted I/∼ as a circle! In a
sense which we shall define and investigate in the next lecture, (I/∼,OI/∼) is the ‘same’
topological space as (S1,OS1). To prove this is the topic of Task E7.3.10.
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6 Tuesday 21st January

6.4 Further geometric examples of quotient topologies

Example 6.4.1. Let ∼ be the equivalence relation on I2 generated by (t, 0) ∼ (t, 1), for
all t ∈ I.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Then I2/∼ is obtained by ‘glueing the upper horizontal edge of I2 to the lower horizontal
edge of I2’. We may picture it as follows.

[(0, 0)] = [(0, 1)] [(1, 0)] = [(1, 1)]

Remark 6.4.2. In the sense mentioned in Remark 6.3.5, (I2/∼,OI2/∼) is the ‘same’
topological space as the cylinder (S1 × I,OS1×I).

Example 6.4.3. Let ∼ be the equivalence relation on I2 generated by (s, 0) ∼ (s, 1),
for all s ∈ I, and by (0, t) ∼ (1, t) for all t ∈ I.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Then I2/∼ is obtained by ‘glueing together the two horizontal edges of I2’, and moreover
‘glueing together the two vertical edges of I2’. We may picture I2/∼ as follows.
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6.4 Further geometric examples of quotient topologies

We can, for instance, first glue together the horizontal edges of I2 as in Example 6.4.1,
to obtain a cylinder.

We then glue the two circles at the end of the cylinder together.

Remark 6.4.4. We can think of I2/∼ as a ‘hollow doughnut’.

Terminology 6.4.5. We refer to (I2/∼,OI2/∼) as the torus.

Notation 6.4.6. We denote (I2/∼,OI2/∼) by (T 2,OT 2).

Example 6.4.7. Let ∼ be the equivalence relation on I2 generated by (0, t) ∼ (1, 1− t),
for all t ∈ I.

Then I2/∼ is obtained by ‘glueing together the two horizontal edges of I2 with a twist’,
so that the arrows in the figure above point in the same direction. We may picture I2/ ∼
as follows.

The glued vertical edges of I2 can be thought of as a line in I2/∼, depicted below.
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6 Tuesday 21st January

We can also picture I2/∼ as follows, from a different angle.

Terminology 6.4.8. We refer to (I2/∼,OI2/∼) as the Möbius band.

Notation 6.4.9. We denote (I2/∼,OI2/∼) by (M2,OM2).

Remark 6.4.10. If you find it difficult at first to visualise the glueing of M2 from I2,
it is a very good idea to try it with a piece of ribbon or paper!

Example 6.4.11. Let ∼ be the equivalence relation on I2 generated by (s, 0) ∼ (1−s, 1),
for all s ∈ I, and by (0, t) ∼ (1, t), for all t ∈ I.

Then I2/∼ is obtained by ‘glueing together the two vertical edges of I2’, and moreover
‘glueing together the two horizontal edges of I2 with a twist’, so that the arrows point
in the same direction. We cannot truly picture I2/∼ in R3. Nevertheless we can gain
an intuitive feeling for it, through the following picture.

98



6.4 Further geometric examples of quotient topologies

We can, for instance, first glue together the vertical edges, to obtain a cylinder.

We can then bend this cylinder so that the arrows on the circles at its ends point in the
same direction.

Next we can push the cylinder through itself.

It is this step that is not possible in a true picture of I2/∼. It can be thought of glueing
together two circles: a cross-section of the part of the cylinder which we have bent
upwards, and a circle on the side of the cylinder which we have not bent upwards.
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6 Tuesday 21st January

The equivalence relation ∼ does not prescribe that these two circles should be glued.
We shall nevertheless proceed. The circle obtained after glueing the two circles together
is pictured below.

Next we can fold back the end of the cylinder which we have pushed through. We obtain
a ‘mushroom with a hollow stalk’.

Finally we can glue the ends of the cylinder together, as prescribed by ∼.
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6.4 Further geometric examples of quotient topologies

Terminology 6.4.12. We refer to (I2/∼,OI2/∼) as the Klein bottle.

Notation 6.4.13. We denote (I2/∼,OI2/∼) by (K2,OK2).

Remark 6.4.14. A rite of passage when learning about topology for the first time is to
be confronted with the following limerick. I’m sure that I remember Colin Rourke enun-
ciating it during the lecture in which I first met the Klein bottle, as an undergraduate
at the University of Warwick!

A mathematician named Klein
Thought the Möbius band was divine.
Said he: “If you glue
The edges of two,
You’ll get a weird bottle like mine!”

To investigate its meaning is the topic of Task ??.

Example 6.4.15. Let ∼ be the equivalence relation on D2 generated by (x, y) ∼ (0, 1)
for all (x, y) ∈ S1.

(0, 1)

We obtain D2/∼ by ‘contracting the boundary of D2 to the point (0, 1)’. Imagine, for
instance, that the boundary circle of D2 is a loop of fishing line. Suppose that we have
a reel at the point (0, 1). Then D2/∼ is obtained by reeling in tight all of our fishing
line. We obtain a ‘hollow ball’.

(0, 1)
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6 Tuesday 21st January

(0, 1)

(0, 1)

(0, 1)
(0, 1)

Remark 6.4.16. We could have chosen any single point on S1, instead of (0, 1), in the
definition of ∼.

Terminology 6.4.17. We refer to (D2/∼,OD2/∼) as the 2-sphere.

Notation 6.4.18. We denote (D2/∼,OD2/∼) by (S2,OS2).

Remark 6.4.19. In the sense mentioned in Remark 6.3.5, (S2,OS2) is the ‘same’ topo-
logical space as the set

{x ∈ R3 | ‖x‖ = 1}

equipped with the subspace topology with respect to (R3,OR3).
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E6 Exercises for Lecture 6

E6.1 Exam questions

Task E6.1.1. Let X = {a, b, c, d, e} be a set with five elements. Let OX be the topology
on X given by

{∅, {a}, {e}, {a, e}, {c, d}, {c, d, e}, {a, c, d, e}, {b, c, d, e}, X} .

Let ∼ be the equivalence relation on X generated by b ∼ d and c ∼ e. List the subsets
of X/∼ which belong to OX/∼.

Task E6.1.2. Let X = {a, b} be a set with two elements. Let OX be the topology on
X given by

{∅, {a}, X} .

Let Y = {a′, b′, c′, d′, , e′} be a set with five elements. Let OY be the topology on Y
given by {

∅, {a′}, {b′, c′}, {a′, b′, c′}, {b′, c′, e′}, {a′, b′, c′, e′}, Y
}
.

Let ∼ be the equivalence relation on Y generated by b′ ∼ c′ and c′ ∼ e′. Let X ×X be
equipped with the product topology OX×X , and let Y/∼ be equipped with the quotient
topology OY/∼. Which of the following maps

X ×X Y/∼

are continuous?

(1) (a, a) 7→ [a′], (a, b) 7→ [b′], (b, a) 7→ [b′], (b, b) 7→ [d′]

(2) (a, a) 7→ [b′], (a, b) 7→ [b′], (b, a) 7→ [d′], (b, b) 7→ [d′]

(3) (a, a) 7→ [b′], (a, b) 7→ [b′], (b, a) 7→ [a′], (b, b) 7→ [d′]

(4) (a, a) 7→ [b′], (a, b) 7→ [a′], (b, a) 7→ [a′], (b, b) 7→ [a′]

(5) (a, a) 7→ [a′], (a, b) 7→ [d′], (b, a) 7→ [a′], (b, b) 7→ [d′]

Task E6.1.3. Let U be the subset of I2 given by([
0, 14
[
×
]
1
8 ,

3
8

[)
∪
(]

1
2 , 1
]
×
]
1
8 ,

3
8

[)
.
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E6 Exercises for Lecture 6

For which of the following choices of (I2/∼,OI2/∼) does π(U) belong to OI2/∼?

(1) The torus.

(2) The Möbius band.

(3) The Klein bottle.

(4) The cylinder.

Task E6.1.4. Find a subset U of I2 with the following properties.

(1) We have that π(U) belongs to OI2/∼ both when (I2/∼,OI2/∼) is the Klein bottle,
and when (I2/∼,OI2/∼) is the Möbius band.

(2) It is not a subset of ]0, 1[× ]0, 1[.

Task E6.1.5. Let ∼ be the equivalence relation on S1 generated by (1, 0) ∼ (0, 1) ∼
(−1, 0) ∼ (−1,−1).

This task has two parts.

(1) Draw a picture of S1/∼. Indicate any important aspects.

(2) Let U be the ‘open arc’ given by{
(x, y) ∈ S1 | −1 ≤ x < −1

2

}
.

(

)

U
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E6.2 For a deeper understanding

Does π(U) belong to OS1/∼?

Task E6.1.6. Find an equivalence relation ∼ on D2 with the following properties.

(1) We can picture D2/∼ as a ‘hollow ball’.

(2) No three distinct elements of D2 are identified by ∼.

Task E6.1.7. Find a subset X of R2, and an equivalence relation ∼ on X, such that
X/∼ can be pictured as a ‘hollow cone’.

Let X be equipped with the subspace topology OX with respect to (R2,OR2). Give an
example of a subset U of X/∼ such that π−1(U) is the disjoint union of a pair of subsets
U0 and U1 of X which belong to OX .

Task E6.1.8. Let X = I2∪([3, 4]× [0, 1]). Let OX be the subspace topology on X with
respect to (R2,OR2).

Define an equivalence relation ∼ on X such that (X/∼,OX/∼) can be thought of as two
tori placed side by side.

E6.2 For a deeper understanding

Task E6.2.1. Let (X,OX) be a topological space. Let A be a subset of X. Let OA

denote the subspace topology on A with respect to (X,OX). Let

A X
i
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E6 Exercises for Lecture 6

denote the inclusion map. Let O′A denote the set{
i−1(U) | U ∈ OX

}
.

Prove that OA = O′A.

Task E6.2.2. Let (X,OX) and (Y,OY ) be topological spaces. Let OX×Y denote the
product topology on X × Y with respect to (X,OX) and (Y,OY ). Let

X × Y X
p1

and

X × Y Y
p2

denote the projection maps. Let O′X×Y denote the set{
p−11 (U) | U ∈ OX

}
∪
{
p−12 (U) | U ∈ OY

}
.

Prove that O′X×Y is a subbasis for (X × Y,OX×Y ).

Remark E6.2.3. In other words, OX×Y is the smallest possible topology on X ×Y for
which p1 and p2 are continuous.

Task E6.2.4. In the notation of Task E6.2.2, find an example to prove that O′X×Y is
not a basis for (X × Y,OX×Y ).

Task E6.2.5. Find an equivalence relation ∼ on I2 such that (I2/∼,OI2/∼) can truly,
unlike the Klein bottle, be pictured as follows.

Terminology E6.2.6. Let X and Y be sets. Let ∼ be an equivalence relation upon X.
Let

X Y
f

be a continuous map. Then f respects ∼ if, for all x, x′ ∈ X such that x ∼ x′, we have
that f(x) = f(x′).
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E6.3 Exploration — torus knots

Task E6.2.7. Let (X,OX) and (Y,OY ) be topological spaces. Let ∼ be an equivalence
relation on X, and let X/∼ be equipped with the quotient topology with respect to
(X,OX). Let

X Y
f

be a continuous map such that f respects ∼. Let

X/∼ Y
g

be the map given by [x] 7→ f(x), which is well defined since f respects ∼. Prove that g
is continuous.

E6.3 Exploration — torus knots

Task E6.3.1. Let K denote the subset of I2 pictured below.

(0, 0) ( 1
3 , 0) ( 2

3 , 0)

(0, 12 ) (1, 12 )

( 1
3 , 1) ( 2

3 , 1) (1, 1)

In words: begin at (0, 0), and follow a line of gradient 2
3 until we hit a side of I2; Jump

over to the other side, and repeat this process. Eventually we end up at (1, 1). Let

I2 T 2
π

be the quotient map. Can you visualise or, even better, draw π(K)?

Remark E6.3.2. If you can draw π(K), I would love to see it!

Remark E6.3.3. Later in the course, we shall investigate knots and links. As an
apéritif, π(K) is a gadget known as the trefoil knot, but wrapped around a torus!

Terminology E6.3.4. A knot which can be wrapped around a torus is known as a
torus knot. Any pair of integers p and q whose greatest common divisor is 1 gives rise
to a torus knot in a similar way, working with lines of gradient p

q in place of 2
3 above.

For any pair of integers p and q, one obtains a link wrapped around a torus.
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