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Fantastic to see these posts! Apropos of not very much except the relevance of knot
theory, I’d like to share some ideas I’ve been working on for a while. Any thoughts which
anybody has would be most welcome. I’ve been kindly offered the possibility to write a
guest post here about these ideas, but presenting the background in a pleasant way is a
bit overwhelming. So instead I’m just going to present the ideas concisely here, and am
happy to elaborate about anything.

What I’m going to talk about is to do with the Poincaré conjecture. The first reaction
of any weather-beaten geometric topologist upon seeing these two words and seeing
the simplicity and shortness of my arguments is probably going to be to dismiss them
immediately! But I hope that one or two of you are generous and open-minded enough
to have a think about them. Let me also try to bring things immediately down to earth.
I did not set out to think about the Poincaré conjecture; I rather stumbled upon these
ideas whilst discussing with a student, Reidun Persdatter Ødegaard, some work for her
master thesis. If there is an error, there is an error; the ideas might be of some interest
nevertheless. I would just ask that the argument be thought about on its own merits.

Enough of that! Let’s get down to it. I will first discuss what I like to call the ‘Poincaré
conjecture for knots’, also known as the Property P conjecture. This is the following
statement. Let K be a framed knot (I will also denote by K its associated blackboard
framed knot diagram, and will switch between the two without mention). Let M be
the 3-manifold obtained by the integral Dehn surgery on K determined by its framing.
Then M has trivial fundamental group if and only if K is equivalent under the framed
Reidemeister moves and Kirby moves to a ±1 framed unknot (a figure of eight).

What has this to do with the Poincaré conjecture? The latter says that any (closed)
3-manifold with trivial fundamental group is isomorphic to the 3-sphere. Any such 3-
manifold is both connected and orientable. By a theorem of Lickorish and Wallace, for
any (closed,) orientable, connected 3-manifold M , there is a framed link L such that M
is isomorphic to the 3-manifold obtained by the integral Dehn surgery on L determined
by its framing. Moreover, by a theorem of Kirby, a pair of such 3-manifolds M and
M ′ are isomorphic if and only if the corresponding blackboard framed link diagrams L
and L′ can be obtained from one another by a finite sequence of framed Reidemeister
moves and Kirby moves. Accurately or not, I like to think of these two results together
as analogous to the surgery proof of the classification of surfaces. Anyhow, by taking
the integral Dehn surgery on a ±1-framed unknot with respect to its framing, we obtain
the 3-sphere. Putting all this together, we see that the Poincaré conjecture can be
reformulated as follows: if M has trivial fundamental group, then the corresponding
blackboard framed link diagram L is equivalent under the framed Reidemeister moves
and Kirby moves to the ±1-framed unknot. What I am calling the Poincaré conjecture
for knots is the special case where M comes from an L that is a framed knot.

In fact, we can go further, and reformulate the Poincaré conjecture as a statement
purely in diagrammatic knot theory. Indeed, given M and L as in the previous para-
graph, the fundamental group of M is isomorphic to π1(L)/〈l1, . . . , ln〉, the quotient of
the fundamental group of L by the normal subgroup generated by the longitudes l1, . . .,
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ln of the components of L. And both π1(L) and these longitudes can be defined from a
link diagram. Thus the Poincaré conjecture becomes: if L is a blackboard framed link
diagram such that π1(L)/〈l1, . . . , ln〉 is trivial, then L is equivalent under the framed
Reidemeister moves and Kirby moves to a ±1-framed unknot.

So far, all of this is background, well-known to geometric topologists. What I am going
to do first is to give an argument to prove this last statement when K is a blackboard
framed knot diagram. And in fact, I am going to argue that, in this special case, no Kirby
moves are needed. That is to say, I am going to give an argument to show that if K is a
blackboard framed knot diagram such that π1(K)/〈l〉 is trivial, where l is the longitude
of K, then K is equivalent under the framed Reidemeister moves alone to a ±1-framed
unknot. Thus we actually obtain something stronger than the Poincaré conjecture for
knots: we also obtain the integral part of a theorem of Gordon and Luecke, that if we
have a non-trivial (rational) Dehn surgery on a framed knot K that gives the 3-sphere,
then K is isotopic to the unknot.

Begin, then, with a framed knot diagram K. Equip it with an orientation (any will
do), which is the one we will use to define its fundamental group and longitude. Label
the arcs of K. By a ‘word in the arcs of K’, I shall mean a monomial a±11 · · · a±1n ,
where a1, . . ., an are (labels of) arcs of K. I will say that a word w in the arcs of K is
realisable if we can find a virtual knot Kw which is equivalent to K under the (virtual)
framed Reidemeister moves, and which has the following property. First, if there are
any occurrences of the longitude l of K as sub-words of w, then remove them all except
one. For ease of notation, I will suppose that we have already done this for w. Then
we ask that there is a point p on Kw such that as we walk around Kw exactly once, in
the direction defined by the orientation, beginning at p and returning to p, then we pass
successively, in some order, under the arcs a1, . . . , an, and under no other arcs; and the
power of ai is the sign (the usual one defined for a crossing of an oriented link diagram)
of the crossing where we pass under ai. We allow one exception: that a consecutive pair
ai = apm1 and ai+1 = a∓1 for some arc a need not be passed under.

Given a crossing C of K as follows, I shall denote by wC the word c−1b−1ab in the
arcs of K.

c a

b

Now, π1(K)/〈l〉 is isomorphic to the quotient of the free group F (K) on the arcs of
K by the normal subgroup N consisting exactly of words in the arcs of K of the form
g−1vg and their inverses, where v is any concatenation of copies of l and of words in the
arcs of K of the form wC for various crossings C of K.

My key claim is that every word of N of the form g−1vg which contains a copy of
l is realisable, and moreover, if a word w is equivalent to such a word of N under the
equivalence relation of being able to add or delete pairs aa−1 and a−1a, where a is an
arc of K, then w is also realisable.
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Let us prove this. Take any v as above. Since we delete all copies of l from v except
one when defining realisability, and since I am assuming that there is at least one copy
of l, we may assume that v is of the form wC1 · · ·wCi · l · wCi+1 · · ·wCn for some n. We
begin at p. We will walk around K in the same direction as our original orientation
which we are using to define π1(K) and l. Suppose that wC1 looks as in the figure above.
Take a small piece of the arc on which p lies, just after p. Drag it, using only virtual
R2 moves, so that it is near the above figure. Then slide it (using two R2 moves and an
R3 move) under the above crossing, so that we have the following local picture. If the
arc on which p lies has label d, we label the arc indicated below of our new virtual knot
diagram below by d as well. In other words, we leave the labellings as they were, except
that there is a ‘break’ in the arc labelled d.

c a

b

d

d

We now proceed in exactly the same way for wC2 , using the arc labelled d in the above
figure. And so on until we have done the same for wCi . At this point, we now encounter
l in our word. And we now walk all the way around the virtual knot which we have
obtained so far, from where we were after carrying out the above procedure for wCi ,
stopping when we reach arc d, a little before we reach p. After this, we carry out the
procedure above for wCi+1 , . . . , wCn , beginning with a little piece of arc between where
we stopped and p. After we are finished with wCn , we simply walk to p.

Hopefully you agree that this realises our v!
Now, take the virtual knot Kv that we have constructed to realise v. To realise g−1vg,

where g is any arc of K, we proceed as follows. Take a small piece of the arc g. Using
virtual R2 moves, drag it across Kv so that it is near the point p. Then apply an R2
move so that we have the following local picture.

p

g

Walking around our new virtual knot from p in the same direction as before, we have
realised g−1vg.

To establish the claim, it remains to show that if we add or delete a pair aa−1 or a−1a,
where a is an arc of K, from such a g−1vg, then w is also realisable. To add a pair aa−1

between say b and c in g−1vg, then we apply the same idea that we have just seen: take
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a small piece of the arc labelled a on Kg−1vg, drag it using virtual R2 moves so that it
is near b and c, and then apply an R2 move so that we have the following picture.

b c

a

The same argument works for adding a−1a, just using the virtual R2 moves in a
different way so that we can drag the arc a over from the opposite side; and of course
we could have b−1 or c−1 or both, and would be able to apply the same argument.

Suppose now that we wish to delete a pair aa−1 from Kg−1vg. Then we must suc-
cessively walk first under a and then under a again in the opposite direction, without
walking under any other arcs. This means that we have a local picture as follows, where
there may be other arcs that pass under those shown or cross them virtually.

a

Using R2 and R3 moves and their virtual counterparts, we can slide the arc a over the
other depicted arc, so that we have (exactly, if we zoom in closely enough) the following
local picture.

a

If we now walk around our new virtual knot in exactly the same way as before,
beginning and ending at p, we have cut out the aa−1 pair. We may also no longer pass
under some further consecutive pairs aa−1 or a−1a, and we may have permuted the order
in which we pass under a and some other arcs. This is permitted this in the definition
of realisability. The same argument works for deleting a pair a−1a.

Hopefully you agree that the claim has been demonstrated! Now, what can we do
with it?

Suppose that π1(K)/〈l〉 is trivial. Then N is F (K). Let a be an arc of K. Since N is
all of F (K), we have that either a or a−1 is equal in F (K) to a word of the form g−1vg
for some g and v, where v is any concatenation of copies of l and of words in the arcs of
K of the form wC for various crossings C of K.

My second claim is that for at least one arc a of K, the word v in the word g−1vg
which is equal to either a or a−1 contains at least one copy of l. For if this is not the
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case, then every arc of K or its inverse is equal in N to a g−1vg where v is a product of
wC ’s, that is to say, every arc of K or its inverse is trivial in π1(K). But then π1(K) is
trivial, and no knot has a trivial fundamental group.

Combining the first and the second claim, we obtain that, for at least one arc a of K,
we have that the word consisting just of a or of a−1 is realisable. That is to say, there is
a virtual knot Ka which is equivalent to K under the (virtual) R2 and R3 Reidemeister
moves, and in which there is a point p of Ka from which, when we walk around Ka in a
particular direction and return back to p, we pass only under a single arc, namely a.

Every virtual knot diagram with a single (classical) crossing of the kind we obtain
by our methods is equivalent under virtual R2 and R3 moves to a classical ±1-framed
unknot. Thus we deduce that K is equivalent as a virtual knot under (virtual) R2 and
R3 moves to a classical ±1-framed unknot. But if a pair of classical knots are equivalent
as virtual knots using (virtual) R2 and R3 moves, then they are equivalent as classical
knots under the framed Reidemeister moves (this is an almost immediate consequence of
the fact that the fundamental rack is a complete invariant of classical framed knots). We
conclude that K is equivalent as a classical knot under the framed Reidemeister moves
to a ±1-framed unknot, as required.

I would be delighted to hear what people think of this.
With some small adaptations, the same argument goes through for arbitrary links (not

only knots) if a certain fact is true, to prove that if π1(L)/〈l1, . . . , lm〉 is trivial, where
the li’s are the longitudes of the components of L, then L is equivalent under the framed
Reidemeister moves and Kirby moves to the empty link. This is a reformulation of the
full Poincaré conjecture in diagrammatic knot theory. The Kirby moves are necessary
here.

I will outline the necessary modifications. When defining realisability, we allow our-
selves to delete copies of all longitudes, leaving only one copy of the longitude of one of
the components, and no copies of the longitudes of any of the others. When constructing
Lv, we must take p to be a point of an arc of the component of L from which the single
longitude in v comes. At the very end of the argument, we use ab, for a distinct pair of
arcs a and b of L, rather than a for a single arc, and we take either a or b to be the arc
to which p belongs. (If there is only one arc of L, then the result is trivial.)

For the proof of the second claim, namely that there must be at least one pair ab such
that the word v in the word g−1vg which is equal to either ab or b−1a−1 contains at least
one copy of l, we argue as follows. If this is not the case, then every pair ab for distinct
a and b in L, or its inverse, is equal in N to a g−1vg where v is a product of wC ’s, that
is to say, every such pair ab or its inverse is trivial in π1(L). Elementary manipulations
then imply that if L has at least three distinct arcs, then it is isomorphic to Z/2Z or
to the trivial group, whereas if it has exactly two distinct arcs, then it isomorphic to Z
or a quotient of Z. The only links L with abelian π1(L) are the unknot and the Hopf
link, and the fundamental group of the latter is Z⊕Z. We deduce that L is the unknot.
Since π1(L)/〈l〉 is trivial, the only possibility is that this unknot has ±1-framing, and
we can delete such a link to obtain the empty link by means of one of the Kirby moves.

When using a pair ab as above at the end of the argument, we obtain that L must
be equivalent under (virtual) R2 and R3 moves to a virtual link which looks locally as
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follows (or with a and b switched).

a
b

The possibility that the crossing in the figure in which the arc labelled b is an under
arc is instead a virtual crossing is excluded by the fact that no virtual link which is
equivalent to a classical link can have this local picture (the two illustrated components
would have linking number which is not an integer, defining this linking number for
virtual links to be half of the sum of the signs of the classical crossings of an oriented
virtual link, and noting that it is an invariant, and that it agrees with the usual linking
number for a classical link diagram, in which case it is always an integer).

The classical Kirby moves allow us to delete the component of the above figure con-
sisting of the arc a. By induction on the number of components of L, we conclude that L
must be equivalent under virtual framed Reidemeister moves and classical Kirby moves
to the empty link diagram.

Now, I expect to be able to conclude here that L must then be equivalent under
classical framed Reidemeister moves and the classical Kirby moves to the empty link
diagram. If this is true, we are done. However, as far as I know, no proof has yet
been given that if a classical framed link diagram is equivalent under virtual framed
Reidemeister moves and classical Kirby moves to another classical framed link diagram,
then they are in fact equivalent under classical framed Reidemeister moves and classical
Kirby moves.

A couple of words on the use of virtual knot theory in my argument: it allows us to drag
a piece of an arc to another part of the knot diagram without affecting realisability. It
is very difficult to see how to do this in general using only classical moves. The theorem
that classical knots which are equivalent virtually are in fact equivalent classically is
deep, because although it is a simple consequence of the fact that the fundamental rack
is a complete invariant, the latter is a deep theorem.

Finally, a lot of people have very generously taken time, in some cases a lot of it,
to think about earlier incarnations of these ideas. I’d especially like to thank Tobias
Barthel, Emily Riehl, and Louis Kauffman. Richard Garner, Bruno Martelli, Markus
Szymik, and Reidun Persdatter degaard also gave, at various stages, feedback for which
I’m very grateful.
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