FINAL EXAM 2013 – MA 1301 SOLUTIONS

• Problem 1:

(a) Compute gcd(217, 161).

217 = 161 + 56 $161 = 56 \cdot 2 + 49$ 56 = 49 + 7 $7 = 7 \cdot 1.$

Therefore, we have that gcd(217, 161) = 7.

(b) c has to be a multiple of 7.

(c) By (a) we get

$$7 = 217 \cdot 3 - 4 \cdot 161.$$

Consequently, $217 \cdot 6 - 161 \cdot 8 = 14$ and so $x_0 = 6$ and $y_0 = -8$. All other solutions are given by x = 6 + 31t and y = -8 - 23t for t an integer.

• Problem 2:

- (•) $n = 273, N_1 = 91, N_2 = 39$ and $N_3 = 21$.
- (•) $91x \equiv 1 \mod 3$ gives $x_1 = 1$; $39x \equiv 1 \mod 7$ gives $x_2 \equiv 2 \mod 7$ and $21x \equiv 1 \mod 13$ provides $x_3 = 5$.
- (•) The solution of the system of congruence equations is given by $\overline{x} = 1 \cdot 91 \cdot 2 + 2 \cdot 39 \cdot 12 + 5 \cdot 21 \cdot 20 \equiv 3218 \mod 273$ so that gives $\overline{x} = 215 \mod 273$.

• Problem 3:

(a) For a with gcd(a, n) = 1: (i) the order of a modulo n is the least integer k such that $a^k \equiv 1 \mod n$; (ii) a primitive root of n is an integer r of order $\varphi(n)$, i.e. $r^{\varphi(n)} \equiv 1 \mod n$.

- (b) (\bullet) 1 has order 1.
 - (•) $2 \equiv 2 \mod 7, 2^2 \equiv 4 \mod 7, 2^3 \equiv 1 \mod 7$ gives that 2 has order 3.
 - (•) $3 \equiv 3 \mod 7, 3^2 \equiv 2 \mod 7, 3^3 \equiv 6 \mod 7, 3^4 \equiv 4 \mod 7, 3^5 \equiv 5 \mod 7, 3^6 \equiv 1 \mod 7$ gives that 3 has order 6 and is a primitive root of 7.
 - (•) $4 \equiv 4 \mod 7, 4^2 \equiv 2 \mod 7$ and $4^3 \equiv 1 \mod 7$ yields that 4 is of order 3 modulo 7.
 - (•) $5 \equiv 5 \mod 7, 5^2 \equiv 4 \mod 7, 5^3 \equiv 6 \mod 7, 5^4 \equiv 2 \mod 7, 5^5 \equiv 3 \mod 7$ and $5^6 \equiv 1 \mod 7$ shows that 5 is a primitive root of 7.
 - (•) The integer 6 is of order 2 modulo 7: $6 \equiv 6 \mod 7$ and $6^2 \equiv 1 \mod 7$.

• Problem 4:

- (a) Suppose p is an odd prime and a such that gcd(a, p) = 1. (i) a is a quadratic residue if the congruence $x^2 \equiv a \mod p$ has a solution; (ii) a is a quadratic non-residue if the congruence $x^2 \equiv a \mod p$ has no solution; (iii) the Legendre symbol $\left(\frac{a}{p}\right)$ is defined to be +1 if a is a quadratic residue and is -1 if a is a quadratic non-residue.
- (b) Since gcd(a, p) = 1, Lagrange's Theorem on polynomial congruences implies that $x^2 \equiv a \mod p$ has at most 2 solutions. If x_0 is a solution of $x^2 \equiv a \mod p$, then $(p x_0)^2 = p^2 2px_0 + x_0^2 \equiv x_0^2 \equiv a \mod p$. Therefore, x_0 and $p x_0$ are all solutions, and since $p \neq 2$ they are different.
- (c) For two distinct primes p and q we have that $\binom{p}{q}\binom{q}{p} = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$.

(d) Compute the Legendre symbol $\left(\frac{281}{397}\right)$.

$$281 = 4 \cdot 70 + 1 \text{ and } 397 = 4 \cdot 99 + 1$$

$$\begin{pmatrix} \frac{281}{397} \end{pmatrix} = \begin{pmatrix} \frac{397}{281} \end{pmatrix} \text{ Quadratic Reciprocity}$$

$$\begin{pmatrix} \frac{397}{281} \end{pmatrix} = \begin{pmatrix} \frac{116}{281} \end{pmatrix} 397 = 281 + 116$$

$$\begin{pmatrix} \frac{116}{281} \end{pmatrix} = \begin{pmatrix} \frac{4 \cdot 29}{281} \end{pmatrix}$$

$$\begin{pmatrix} \frac{2 \cdot 2 \cdot 29}{281} \end{pmatrix} = \begin{pmatrix} \frac{2}{281} \end{pmatrix}^2 \begin{pmatrix} \frac{29}{281} \end{pmatrix} \text{ Multiplictativity}$$

$$\begin{pmatrix} \frac{29}{281} \end{pmatrix} = \begin{pmatrix} \frac{281}{29} \end{pmatrix} \text{ Quadratic Reciprocity}$$

$$\begin{pmatrix} \frac{281}{29} \end{pmatrix} = \begin{pmatrix} \frac{20}{29} \end{pmatrix} 281 = 29 \cdot 9 + 20$$

$$\begin{pmatrix} \frac{20}{29} \end{pmatrix} = \begin{pmatrix} \frac{2}{29} \end{pmatrix} \begin{pmatrix} \frac{10}{29} \end{pmatrix} \text{ Multiplictativity}$$

$$\begin{pmatrix} \frac{2}{29} \end{pmatrix} \begin{pmatrix} \frac{10}{29} \end{pmatrix} = \begin{pmatrix} \frac{2}{29} \end{pmatrix}^2 \begin{pmatrix} \frac{5}{29} \end{pmatrix} \text{ Multiplictativity}$$

$$\begin{pmatrix} \frac{5}{29} \end{pmatrix} = \begin{pmatrix} \frac{29}{5} \end{pmatrix} \text{ Quadratic Reciprocity}$$

$$\begin{pmatrix} \frac{4}{5} \end{pmatrix} = (\frac{4}{5}) 29 = 5 \cdot 5 + 4$$

$$\begin{pmatrix} \frac{4}{5} \end{pmatrix} = +1. \text{ Computation}$$

• Problem 5:

- (a) An arithemtic function f is multiplicative if f(mn) = f(m)f(n) for all integers m, n with gcd(m, n) = 1.
- (b) Euler's φ -function, $\varphi(n)$, for a positive integer n is defined as the number of integers in $\{1, ..., n\}$ that are relatively prime to n. Equivalently, $\varphi(n)$ is the number of integers in $\{1, ..., n\}$ that have a multiplicative inverse modulo n.

$$\begin{aligned} \varphi(p_1^{k_1} p_2^{k_2} p_3^{k_3}) &= (p_1^{k_1} - p_1^{k_1 - 1})(p_2^{k_2} - p_2^{k_2 - 1})(p_3^{k_3} - p_3^{k_3 - 1}) \\ &= n \Big(1 - \frac{1}{p_1} \Big) \Big(1 - \frac{1}{p_2} \Big) \Big(1 - \frac{1}{p_3} \Big). \end{aligned}$$

(c) $\varphi(60) = \varphi(2^2 \cdot 3 \cdot 5) = 16$

• Problem 6:

- (a) $n = 55 = 5 \cdot 11$, we have $\varphi(55) = 40$. Therefore, $3d \equiv 1 \mod 40$ yields d = 27. Secret key is $\{55, 27\}$.
- (b) Encrypted message m is $E(m) = m^3 \mod 55$. For m = 18 we get $E(18) = 18^3 = 5832 \equiv 2 \mod 55$, i.e. one sends 2.