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Problem 1 The sequence of Fibonacci numbers is defined recursively as follows.

(1) The first Fibonacci number is 1.

(2) The second Fibonacci number is 1.

(3) Assume that the first m Fibonacci numbers have been defined, where m is a given natural
number such that m ≥ 2. We then define the (m + 1)-st Fibonacci number to be the sum of
the m-th Fibonacci number and the (m− 1)-st Fibonacci number.

For any natural number r, let us denote the r-th Fibonacci number by ur. Then (3) says that

um+1 = um + um−1.

a) Write out the first five Fibonacci numbers. [1 poeng]

b) Let n be a natural number. Prove that

u2 + u4 + u6 + · · · + u2n = u2n+1 − 1.

[4 poeng]

Problem 2

a) Let n be an integer. Assume that there is an integer k such that n = 5k + 3. Show that
there then is an integer m such that

n2 = 5m + 4.

HInt: Use that 9 = 5 + 4 in the course of your answer. [1 poeng]

b) Let n be an integer. Show that there is an integer m such that one of the following assertions
is true:

(1) n2 = 5m;

(2) n2 = 5m + 1;

(3) n2 = 5m + 4;

[4 poeng]

Problem 3

a) Use Euclid’s algorithm to find an integer solution to the equation

295x− 126y = 27.

[4 poeng]

b) Is the following assertion true or false: the equation

295x− 126y = c

has an integer solution for every integer c? Justify your answer. [1 poeng]
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Problem 4

a) Explain why 7 ≡ −1 (mod 8). [1 poeng]

b) Show without calculating that 733 ≡ −1 (mod 8). [1 poeng]

c) Show that
377 + 3 · 733

is divisible by 8, without calculating the sum. [3 poeng]


