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Part |I.

Point-set foundations






1. Monday 6th January

1.1. Definition of a topological space

Definition 1.1.1. Let X be a set, and let O be a set of subsets of X. Then (X, O) is
a topological space if the following hold.

(1) The empty set () belongs to O.
(2) The set X belongs to O.

(3) Let U be a union of (possibly infinitely many) subsets of X which belong to O.
Then U belongs to O.

(4) Let U and U’ be subsets of X which belong to O. Then U N U’ belongs to O.
Remark 1.1.2. By induction, the following holds if and only if (4) holds.

(4’) Let J be a finite set, and let {U; }jcs be a set of subsets of X such that U; belongs
to O for all j € J. Then (; U; belongs to O.

Terminology 1.1.3. Let (X, O) be a topological space. We refer to O as a topology on
X.

@ A set may be able to be equipped with many different topologies! See

1.2. Open and closed subsets

Notation 1.2.1. Let X be a set. By A C X we shall mean that A is a subset of X,
allowing that A may be equal to X. In the past, you may instead have written A C X.

Terminology 1.2.2. Let (X, O) be a topological space.

(1) Let U be a subset of X. Then U is open with respect to O if U belongs to O.

(2) Let V be a subset of X. Then V is closed with respect to O if X \ V is an open
subset of X with respect to O.

11



1. Monday 6th January

1.3. Discrete and indiscrete topologies

Example 1.3.1. We can equip any set X with the following two topologies.

(1) The discrete topology, consisting of all subsets of X. In other words, the power
set of X.

(2) The indiscrete topology, given by {0, X }.

Remark 1.3.2. By (1) and (2) of Definition every topology on a set X must
contain both () and X. Thus the indiscrete topology is the smallest topology with which
X may be equipped.

1.4. Finite examples of topological spaces

Example 1.4.1. Let X = {a} be a set with one element. Then X can be equipped
with exactly one topology, given by {0, X}. In particular, the discrete topology on X is
the same as the indiscrete topology on X.

Remark 1.4.2. The topological space of Example is important! It is known as
the point.

Example 1.4.3. Let X = {a,b} be a set with two elements. We can define exactly four
topologies upon X.

(1) The discrete topology, given by {®,{a},{b}, X }.
(2) The topology given by {0, {a}, X }.

(3) The topology given by {0, {b}, X }.

(4) The indiscrete topology, given by {@, X }
Remark 1.4.4. Up to the bijection

f
X——X

given by a — b and b — a, or in other words up to relabelling the elements of X, the

topologies of (2) and (3) are the same.

Terminology 1.4.5. The topological space (X, Q), where O is the topology of (2) or
(3), is known as the Sierpirski interval, or Sierpiriski space.

Remark 1.4.6. In fact (1) — (4) is a list of every possible set of subsets of X which
contains () and X. In other words, every set of subsets of X which contains () and X
defines a topology on X.

12



1.5. Open, closed, and half open intervals

Example 1.4.7. Let X = {a,b, c} be a set with three elements. We can equip X with
exactly twenty nine topologies! Up to relabelling, there are exactly nine.

(1) The set
{0,{b},{a, b}, {b, ¢}, X}

defines a topology on X.

(2) The set Ox given by
{0,{a} {c}, X}

does not define a topology on X. This is because

{ayU{c} ={a,c}
does not belong to Oy, so (3) of Definition is not satisfied.

(3) The set Ox given by
{0,{a,b},{a,c}, X}

does not define a topology on X. This is because

{a,b} N{a, ¢} = {a}

does not belong to Ox, so (4) of Definition is not satisfied.

Remark 1.4.8. There are quite a few more ‘non-topologies’ on X.

1.5. Open, closed, and half open intervals
Notation 1.5.1. Let R denote the set of real numbers.

Notation 1.5.2. Let a,b € R.

(1) We denote by |a, b the set

{reR|a<z<b}.

13



1. Monday 6th January

(2) We denote by |a, oo[ the set

{r eR|x > a}.

(3) We denote by |—o0, b[ the set

{r eR|x < b}

(4) We sometimes denote R by |—o0, col.

Terminology 1.5.3. We shall refer to any of (1) — (4) in Notation as an open
interval.

Remark 1.5.4. We shall never use the notation (a, b), (a,c0), (—o0,b), or (—oo, 00) for
an open interval. In particular, for us (a,b) will always mean an ordered pair of real
numbers a and b.

Notation 1.5.5. Let a,b € R. We denote by [a, b] the set

{reR|a<z<0b}.

Terminology 1.5.6. We shall refer to [a,b] as a closed interval.

Notation 1.5.7. Let a,b € R.

14



1.5. Open, closed, and half open intervals

(1) We denote by [a, b] the set

{reR|a<z<b}

(2) We denote by |a, b] the set

{reR|a<xz<b}.

(3) We denote by [a, co[ the set

{reR|z>a}.

(4) We denote by |—o0, b] the set

{r eR |z <b}.

Terminology 1.5.8. We shall refer to any of (1) — (4) of Notation as a half open

interval.

Terminology 1.5.9. By an interval we shall mean a subset of R which is either an open
interval, a closed interval, or a half open interval.

15



1. Monday 6th January

1.6. Standard topology on R

Definition 1.6.1. Let Ogr denote the set of subsets U of R with the property that, for
every x € U, there is an open interval I such that x € I and I C U.

Observation 1.6.2. We have that R belongs to Or. Moreover ) belongs to Og, since
the required property vacuously holds.

Example 1.6.3. Let U be an open interval |a, b].

Then U belongs to Ogr. For every € U, we can take the corresponding open interval I
such that x € I and I C U to be U itself.

There are infinitely many other possibilities for I. For instance, suppose that U is
the open interval |—1,2[. Let z = 1.

16



E1l. Exercises for Lecture 1

E1.1. Exam questions

Task E1.1.1. Let X = {a,b,¢,d}. Which of the following defines a topology on X?
(1) {0.{a}.{c},{a,c},{b,d}, X}
(2) {®7 {a/7 C}?{d}7 {b7 d}? {0/7 C’ d}7X}
(3) {0.{a}.{b,d},{a,b,d} {a,c,d}, X}

Task E1.1.2.

(1) Let X be an n x n grid of integer points in R?, where n € N.

Let O be the set of subsets of X which are m x m grids, for 0 < m < n, at the top
right corner. Think of the case m = 0 as the empty set.

17



E1. Exercises for Lecture 1

Does (X, O) define a topological space?

(2) Let Y be an (n+ 1) x n grid of integer points in R2.

Let O be the set of subsets of Y which are m x m grids, for 0 < m < n, at the top
right corner. Again, think of the case m = 0 as the empty set.

18



FE1.1. Exam questions

Does (Y, O) define a topological space?

(3) Let X be asin (1). Suppose that n > 3. Let O be the union of the following sets
of subsets of X.

(a) O.

(b) The set of subsets of X which are m x m grids, for 0 < m < n, at the bottom
left corner.

O

(¢) Unions of subsets of X of the kind considered in (a) and (b). For instance,
the union of a 3 x 3 grid at the bottom left corner, and a 2 x 2 grid at the top
right corner.

Does (X, Q') define a topological space?

Task E1.1.3 (Continuation Exam, August 2013). Let X denote the set

([0,1] x ]0, 00]) U (]0, 0] x [0,1]).

19



E1. Exercises for Lecture 1

Let O be the union of {f), X'}, the set

{[0,1] x [0,n] | n € N}

{[0,n] x [0,1] | n € N}

Is (X, O) a topological space?

and the set

E1.2. In the lecture notes
Task E1.2.1. Let X be a set.

(1) Verify that conditions (1) — (4) of Definition are satisfied by the discrete
topology on X.

(2) Verify that conditions (1) — (4) of Definition are satisfied by the indiscrete
topology on X.

Task E1.2.2.
(1) Check that you agree that (1) of Example is the discrete topology.

20



FE1.3. For a deeper understanding

(2) Verify that (2) and (3) of Example define topologies.
Task E1.2.3.
(1) Verify that (1) of Example defines a topology.

(2) Can you find the nine different topologies, up to relabelling, on a set with three
elements?

(3) Find four examples of non-topologies on a set with three elements, in addition to

(2) and (3) of Example

E1.3. For a deeper understanding

Task E1.3.1. Let X be a set. Let C be a set of subsets of X such that the following
hold.

(1) The empty set () belongs to C.
(2) The set X belongs to C.

(3) Let V be an intersection of (possibly infinitely many) subsets of X which belong
to C. Then V belongs to C.

(4) Let V and V' be subsets of X which belong to C. Then V UV’ belongs to C.

Let O be given by
{X\ V|V belongs to C}.

Prove that (X, O) is a topological space.

Remark E1.3.2. Conversely, let (X, O) be a topological space. Let C denote the set of
closed subsets of X. Then C satisfies (1) — (4) of Task [E1.3.1

Task E1.3.3 (Longer). Let I be a subset of R. Prove that I is an interval if and only
if it has the following property: if x < y < 2’ for z,2' € I and y € R, then y € I. For
proving that I is an interval if this condition is satisfied, you may wish to proceed as
follows.

(1) Suppose that I is bounded. Denote the greatest lower bound of I by a, and denote
the least upper bound of I by b. Prove that if a <y < b, then y € I.

(2) Using this, deduce that I is |a, b|, [a,b], [a,b], or ]a,b].

(3) Give a proof when I is not bounded.

21



E1. Exercises for Lecture 1

Remark E1.3.4. Task relies crucially on the existence of a least upper bound
for a subset of R which is bounded above, and on the existence of a greatest lower bound
for a subset of R which is bounded below. This is known as the completeness of R.

We shall demonstrate in later lectures that (R, Or) has important properties. To use

a couple of terms which we shall define later, it is connected and locally compact. The
proofs ultimately rest upon the completeness of R, via Task

Task E1.3.5. Let Iy and I; be intervals. Prove that Iy N I; is an interval. You may
wish to appeal to Task [E1.3.3

E1.4. Exploration — Alexandroff topological spaces

Definition E1.4.1. Let X be a set, and let XX denote the set of ordered pairs (zg, z1)
of X such that zq is not equal to z1. A pre-order on X is the data of a map

X0X —X— {0,1},

or, in other words, for every ordered pair (zg,z1) of distinct elements of X, an element
of the set {0,1}. We require that for any ordered triple (x¢, z1,22) of mutually distinct
elements of X, such that x(zg,z1) =1 and x(z1,22) = 1, we have that x(zg,z2) = 1.

Terminology E1.4.2. There is an arrow from xg to x1 if x(xg,x1) = 1. We depict this
as follows.

rg — I1

Example E1.4.3. Let X = {0,1}. There are four pre-orders on X, pictured below.

_—

0 1 0 1 0 1

1 0

The rightmost diagram should be interpreted as: x(0,1) =0 and x(1,0) = 0.
Example E1.4.4. Let X = {0,1,2}. There are 29 pre-orders on X. A few are pictured

below.
0——1 0——1 0 1 0——1
2 2 2 2
0——1 0 1 0 1
2 2 2

22



E1.4. Exploration — Alexandroff topological spaces

Example E1.4.5. The following are not examples of pre-orders on X.

0 1 0 1 0 1
2 2 2

Task E1.4.6. Why do the diagrams of Example [E1.4.5| not define pre-orders.?

Example E1.4.7. The following defines a pre-order on N.
1 2 3 4 5 6 7

Notation E1.4.8. Let X be a set, and let x be a pre-order on X. For any pair (zo, z1)
of elements of X, we write xg < x1 if eiher there is an arrow from xg to x1 or xy = 7.

Definition E1.4.9. Let O, denote the set of subsets U of X with the property that if
2 € U and 2’ has the property that z < 2/, then 2/ € U.

Task E1.4.10. Prove that (X, O.) is a topological space.

Task E1.4.11. Which of the four pre-orders of Example |E1.4.3| corresponds to the
topology defining the Sierpinski interval? Which corresponds to the discrete topology?
Which to the indiscrete topology?

Task E1.4.12. Find a pre-order on X = {a, b, ¢} which corresponds to the topology O
on X given by

{0, {b},{a, b}, {b,c}, X}

Task E1.4.13. List all the subsets of X = {a,b,c,d} which belong to the topology O
on X corresponding to the following pre-order.

N
L/

The topological space (X, Q) is sometimes known as the pseudo-circle.

Task E1.4.14. Let (X, <) be a set equipped with a pre-order, and let O~ denote the
corresponding topology on X. Prove that, for any set {U;},cs of subsets of X belonging
to Ox, we have that ﬂjeJ Uj belongs to O.. In particular, this holds even if J is infinite.

23



E1. Exercises for Lecture 1

Remark E1.4.15. In other words, (X,O<) is an Alexandroff topological space.

Notation E1.4.16. Let (X, ) be an Alexandroff topological space. For any = € X,
let U, denote the intersection of all subsets of X which contain x and which belong to

0.

Definition E1.4.17. Let (X, O) be an Alexandroff topological space. For any xg,x1 €
X, define zp < x1 if Uy, C Uy,.

Task E1.4.18. Prove that < defines a pre-order on X.
Task E1.4.19. Let X = {a,b,¢,d, e}, and let O denote the topology on X given by
{®7 {a,b},{c},{d, e}, {a,b,c}, {c,d, e}, {a,b,d, e}, X}.

Draw the pre-order corresponding to (X, O).

E1.5. Exploration — Zariski topologies
Notation E1.5.1. Let Z denote the set of integers.
Notation E1.5.2. Let Spec(Z) denote the set of prime numbers.
Notation E1.5.3. For any integer n, let V(n) denote the set
{p €Z]|pis prime, and p | n}.
Definition E1.5.4. Let O denote the set
{Spec(Z)\V(n) |n € Z}.

Task E1.5.5. Prove that (Spec(Z), Q) is a topological space. You may wish to make
use of Task [E1.3.11

Terminology E1.5.6. The topology O on Spec(Z) is known as the Zariski topology.

Remark E1.5.7 (Ignore if you have not met the notion of a ring before). Generalising
this, one can define a topology on the set of prime ideals of any commutative ring. This
is a point of departure for algebraic geometry.

24



2. Tuesday 7th January

2.1. Standard topology on R, continued

Example 2.1.1. Let U be a disjoint union of open intervals. For instance, the union of
|—3,—1[ and ]4, 7.

Then U belongs to Or. There are two cases.

(1) If =3 < = < —1, we can, for instance, take I to be |—3, —1]

Remark 2.1.2. In fact, every subset of U which belongs to Og is a disjoint union of
(possibly infinitely many) open intervals. To prove this is the topic of Task [E2.3.7]

Example 2.1.3. Let U = {x} be a subset of R consisting of a single z € R.

I
T

Then U does not belong to Or. The only subset of {z} to which = belongs is {z} itself,
and {x} is not an open interval.
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2. Tuesday 7th January

Example 2.1.4. Let U be the half open interval [1,5[.

Then U does not belong to O, since there is no open interval I such that 1 € I and
IcU.

Lemma 2.1.5. Let {U; }j c; be a set of (possibly infinitely many) subsets of R such

that U; € O for all j € J. Then |, ; U; belongs to Og.

CBGUU]'.

jed

Proof. Let

By definition of | J s Uj, we have that z € Uj for some j € J. By definition of O, there
is an open interval I such that x € I and I C U; C U,¢; Uj- O

Observation 2.1.6. Let I and I’ be open intervals. Then I NI’ is a (possibly empty)
open interval. This is the topic of Task

Example 2.1.7. The intersection of the open intervals |0, 2] and |1, 3[ is the open interval
]1,2].
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2.1. Standard topology on R, continued

Lemma 2.1.8. Let U and U’ be subsets of R which belong to Og. Then U NU’ belongs
to Og.

Proof. Let x € UNU’. By definition of O, we have the following.

(1) There is an open interval Iy such that x € Iy and Iy C U.

(2) There is an open interval Ij» such that x € Iy and Iy C U'.

Then x € Iy N Iy and Iy N I € U NU’'. By Observation we have that Iy N Iy

is an open interval. O

Proposition 2.1.9. The set O defines a topology on R.

Proof. This is exactly established by Observation Lemma and Lemma [2.1.8
O

Terminology 2.1.10. We shall refer to Or as the standard topology on R.

Remark 2.1.11. An infinite intersection of subsets of R which belong to Or does not
necessarily belong to Or. For instance, by Example we have that ] —%, % [ belongs
to Or for every integer n > 1. However,

-5 5= {on

neN

D=~
D=

By Example the set {0} does not belong to Og.

Remark 2.1.12. The topological space (R, Og) is fundamental. We shall construct all
our geometric examples of topological spaces in various ‘canonical ways’ from it.

A principal reason that we allow infinite unions in (3) of Definition but only
finite intersections in (4) of Definition is that these properties hold for Og.

Remark 2.1.13. An Alezandroff topological space is a topological space (X, Q) which,
unlike (R, Or) and the other geometric examples of topological spaces that we shall
meet, has the property that if U is an intersection of (possibly infinitely many) subsets
of X which belong to O, then U belongs to O. Alexandroff topological spaces are the

topic of Exploration
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2. Tuesday 7th January

2.2. Subspace topologies

Remark 2.2.1. We shall explore several ‘canonical ways’ to construct topological spaces.
In this section, we discuss the first of these.

Definition 2.2.2. Let (Y, Oy) be a topological space, and let X be a subset of Y. Let
Ox denote the set

{XNU|Ue€Oy}.

Proposition 2.2.3. Let (Y,Oy) be a topological space, and let X be a subset of Y.
Then (X, Ox) is a topological space.

Proof. We verify that each of the conditions of Definition holds.

28

(1) Since Oy is a topology on Y, we have that () belongs to Oy. We also have that

) = X N . Thus 0 belongs to Ox.

(2) Since Oy is a topology on Y, we have that Y belongs to Oy. We also have that

X =XnNY. Thus X belongs to Ox.

(3) Let {Uj};c; be a set of subsets of X which belong to Ox. By definition of Ox,

we have, for every j € J, that
Ui=XnN UJ/-,

for a subset UJ’. of Y which belongs to Oy. Now

Uui=UJ xnuj)

jedJ jeJ
o /
=xn|JU]
JjeJ

Since Oy is a topology on Y, we have that
Ujes Uj belongs to Ox.

e Uj belongs to Oy. We deduce that

(4) Suppose that Uy and U; are subsets of X which belong to Ox. By definition of

Ox, we have that
Uo=XNU]

and
Uy =XnUj,

for a pair of subsets U} and U] of Y which belong to Oy. Now
UsnU; = (XNUy) N (XNUY)
=Xn(Uynty).

Since Oy is a topology on Y, we have that UjNUj belongs to Oy. We deduce that
Uy N Uy belongs to Ox.



2.3. Example of a subspace topology — the unit interval

O]

Remark 2.2.4. The flavour of this proof is very similar to many others in the early
part of the course. It is a very good idea to work on it until you thoroughly understand

it. This is the topic of Task [E2.2.2

Terminology 2.2.5. We refer to Ox as the subspace topology on X with respect to
(Y, Oy).

2.3. Example of a subspace topology — the unit interval

Definition 2.3.1. Let I denote the closed interval [0, 1]. Let O; denote the subspace
topology on I with respect to (R, Og).

Terminology 2.3.2. We refer to (I, Oy) as the unit interval.

Example 2.3.3. Let ]a,b[ be an open interval such that 0 < a < b < 1.

As we observed in Example the open interval |a, b belongs to Or, We also have
that
la,b[ = I N]a,b[.

Thus ]a, b[ belongs to Of.

Example 2.3.4. Let [0, b] be an half open interval such that 0 < b < 1.

Let a be any real number such that a < 0. As we observed in Example the open
interval ]a, b belongs to Or, We have that

[0,6] =IN]a,bl.
Thus [0, b[ belongs to Oj.

Example 2.3.5. Let ]a, 1] be an half open interval such that 0 < a < 1.
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Let b be any real number such that b > 1. As we observed in Example the open
interval |a, b belongs to Or, We have that
la, 1] = INla,b.

Thus Ja, 1] belongs to Oj.

Example 2.3.6. As we proved in Proposition the set I belongs to Oj.

Example 2.3.7. Disjoint unions of subsets of I of the kind discussed in Example [2.3:3]
Example 2.3.4] and Example 2.3.5] belong to O;. This is a consequence of Proposition
but could also be demonstrated directly. For instance, the set

belongs to Oj.

ot —
W —



E2. Exercises for Lecture 2

E2.1. Exam questions

Task E2.1.1. Decide whether the following subsets of R are open, closed, both, or
neither with respect to Og.

(1) ]-23,150]

(2) R

(3) [2,3]

(4) Unez]n —3.n+ 3]
(5) ]—o00,2].

(6) Upen 13- 10].

(7) 15,8[ U 47,60

8) Unen [7:1 -2

Task E2.1.2. Give an example to demonstrate that an infinite union of closed subsets
of R with respect to Or need not be closed.

Task E2.1.3. Let X be the subset [1,2] U [4,5] of R. Let Ox denote the subspace
topology on X with respect to (R, Or). For each of the following, give an example of a
subset U of X which has the required property, and which belongs to Ox.

(1) We have that U N [4,5] = (), and neither 1 nor 2 belongs to U.
(2) We have that U N [1,2] =, and 4 does not belong to U.

(3) We have that U N [4,5] = 0, and 1 belongs to U.

(4) We have that U N [1,2] = 0, and 4 belongs to U.

(5) Both 2 and 4 belong to U.

(6) We have that U N1, 2] is not empty, that U N[4, 5] is not empty, and that neither
1, 2, nor 4 belongs to U.
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E2. Exercises for Lecture 2

E2.2. In the lecture notes

Task E2.2.1. Prove Observation 2.1.6]

Since this task is appealed to in the proof of Proposition you are not permitted
to use that O is a topology on R!

Task E2.2.2. Take a look at the proof of Proposition Afterwards, cover it up,
and try to prove Proposition for yourself. There is esssentially only one way to do
it. Keep working on this until you can manage it.

E2.3. For a deeper understanding

Task E2.3.1. Let (Y, Oy) be a topological space. Let X be a subset of Y, and let Ox
denote the subspace topology on X with respect to (Y,Oy). Let A be a subset of X.
Let O denote the subspace topology on A with respect to (X,Ox). Let O} denote
the subspace topology on A with respect to (Y, Oy). Prove that O% = (’)X.

Task E2.3.2. Let (Y, Oy) be a topological space. Let X be a subset of Y, and let Ox
be the subspace topology on X with respect to (Y, Oy). Prove that a subset V of X
is closed with respect to Ox if and only if there is a subset V'’ of Y with the following
properties.

(1) We have that V' is closed with respect to (Y, Oy).

(2) We have that V =X NV".

Task E2.3.3. Let (Y, Oy) be a topological space. Let X be a subset of Y, and let Ox
denote the subspace topology on X with respect to (Y, Oy ).

(1) Suppose that X belongs to Oy. Prove that if U belongs to Ox, then U belongs
to Oy.

(2) Does the conclusion of (1) necessarily hold if X does not belong to Oy ?

(3) Suppose that X is closed with respect to Oy. Let V be a subset of X which is
closed with respect to Ox. Prove that V, when viewed as a subset of Y, is closed
with respect to Oy. You may wish to appeal to Task [K2.3.2

(4) Does the conclusion of (3) necessarily hold if X is not closed with respect to Oy ?

Task E2.3.4. Let (X,Ox) be a topological space. Let {Uj},.; be a set of subsets of
X with the property that X = Uje s Uj. For every j € J, let Oy, denote the subspace
topology on U; with respect to (X, Ox). Suppose that U; belongs to Ox for every j € J.
Let U be a subset of X such that U N U; belongs to Oy, for every j € J. Prove that U
belongs to Ox. You may wish to proceed as follows.
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E2.3. For a deeper understanding

ppealing to las 3. , observe that U N A; belongs to Ox.
1) Appeali Task [E2.3.3] (1), ob hat U N A; bel o

(2) Prove that
U=JUuna,.
JjeJ
For this, you may wish to begin by observing that U = U N X, and then appeal to
one of the assumptions.

Remark E2.3.5. There is an analogous result for closed sets, but an additional hy-
pothesis is required. This is the topic of Task

Task E2.3.6. Let (X,Ox) be a topological space. Let {Uj},.; be a set of subsets of
X with the property that X = [ jeJ Uj. For every j € J, let Oy, denote the subspace
topology on U; with respect to (X, Ox). Suppose that U; belongs to Ox for every j € J.
Let V be a subset of X such that V' NUj is closed with respect to Oy, for every j € J.
Prove that V is closed with respect to Ox. You may wish to proceed as follows.

(1) Observe that, since V N Uj is closed with respect to Oy, for every j € J, we have
that U; \ (V NUj) belongs to Oy, for every j € J.

(2) Observe that U; \ (VNU;) =U;N(X\V).
(3) By Task deduce that X \ V belongs to Ox.

Task E2.3.7 (More difficult). Prove that a subset of R belongs to O if and only if it
is a disjoint union of open intervals. For proving that if U belongs to Og, then it is a
disjoint union of open intervals, you may wish to proceed as follows.

(1) Define a relation ~ on U by a ~ b if
[min{a, b}, max{a,b}] C U.
Verify that ~ defines an equivalence relation.

(2) Let

U U/~

denote the map given by x +— (), where (x) denotes the equivalence class of = with
respect to ~. By means of Task [E1.3.3] prove that, for every y € U/~, the subset
q (y) of U is an interval.

(3) Moreover, appealing to the fact that U belongs to Og, prove that, for every
y € U/~, the interval ¢! (y) is open.
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E2. Exercises for Lecture 2

(4) Verify that, for distinct y,y" € U/~, the set
¢ y)Nng'(y)

is empty. Verify that

v=|J ¢«'w.

yeU/~

Remark E2.3.8. In fact, a subset of R is open in the standard topology on R if and
only if it is a disjoint union of countably many open intervals. This will follow from Task

by a later task.
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3. Monday 13th January

3.1. Product topologies

Remark 3.1.1. In this section, we discuss our second ‘canonical way’ to construct
topological spaces.

Definition 3.1.2. Let (X,Ox) and (Y, Oy) be topological spaces. Let Oxxy denote
the set of subsets U of X x Y with the property that, for every (z,y) € U, there is a
subset Ux of X and a subset Uy of Y with the following properties.

(1) We have that = € Uy, and that Ux belongs to Ox.
(2) We have that y € Uy, and that Uy belongs to Oy-.

(3) We have that Ux x Uy C U.

Proposition 3.1.3. Let (X, Ox) and (Y, Oy) be topological spaces. Then (X xY, Oxxy)
is a topological space.

Proof. We verify that each of the conditions of Definition holds.

(1) The empty set () belongs to Ox vy, since the required property vacuously holds.
(2) Let (z,y) € X x Y. We have the following.

(a) Since Ox is a topology on X, we have that X belongs to Ox. Evidently,
rxeX.

(b) Since Oy is a topology on Y, we have that Y belongs to Oy. Evidently,
yevy.

(¢) We have that X xY C X x Y.

Taking Ux to be X, and taking Uy to be Y, we deduce that X x Y belongs to
Oxxy-

(3) Let {Uj},.; be a set of subsets of X x Y which belong to Oxxy. Let (z,y) €
Ujes Uj- By definition of (J,¢; Uj, there is a j € J such that (z,y) € U;.

By definition of Ox«y, there is a subset Ux of X and a subset Uy of Y with the
following properties.

(a) We have that € Uy, and that Ux belongs to Ox.
(b) We have that y € Uy, and that Uy belongs to Oy-.
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3. Monday 13th January

(c) We have that Uy x Uy C Uj.

We have that U; C U;c;Uj. By (c), we deduce that Ux x Uy C ;e Uj. We
conclude from the latter, (a), and (b), that (J;c; U; belongs to Oxxy-

(4) Let Uy and U; be subsets of X x Y which belong to Oxxy. Let (z,y) € Uy N Uj.
By definition of Oxxy, there is a subset Ug( of X and a subset Ugf of Y with the
following properties.

a) We have that = € UgX, and that U< belongs to Ox.
0 0
b) We have that y € U}, and that U} belongs to Oy-.
0 0
(¢c) We have that Us* x U} C U.

Moreover, by definition of Ox«y, there is a subset UIX of X and a subset Uly of Y
with the following properties.

(d) We have that x € UjX, and that U;X belongs to Ox.
(e) We have that y € U}, and that UY belongs to Oy-.
(f) We have that U{* x UY C Uy.

We deduce the following.

(i) By (a) and (d), we have that z € Us* N U;X. Moreover, since Oy defines a
topology on X, we have by (a) and (d) that Us* N U belongs to Ox.

(ii) By (b) and (e), we have that y € UY NUY. Moreover, since Oy defines a
topology on Y, we have by (b) and (e) that U} N U} belongs to Oy

(iti) We have that
(U nUX) x (U nUY) = (Ug xUY)n (U xUY).
By (c) and (f), we have that
(U xUY) N (U xUY) c Upn Uy

Hence
(U nUT) x (U3 nUY) € U N U

Taking Ux to be U@X NU{X, and taking Uy to be US/ NUY , we conclude that Uy NU;
belongs to Oxxy .

d

Remark 3.1.4. This proof has much in common with the proof of Proposition [2.1.9)and
the proof of Proposition Perhaps you can begin to see how to approach a proof
of this kind? Again, it is a very good idea to work on the proof until you thoroughly
understand it. This is the topic of Task
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3.2. The product topology on R?

3.2. The product topology on R?

Definition 3.2.1. Let Oz denote the product topology on R? with respect to two
copies of (R, Og).

Example 3.2.2. Let Uy = Jag, bo[, and let U; = Jay, b1[ be open intervals. Let (x,y) €
U() X Ul.

by

a1

ao bo

By Example both Uy and U; belong to Or. We deduce that Uy x Uy belongs to
Og2, since we can take Ux to be Uy, and can take Uy to be Uj.

@ In the figures, the dashed boundary does not belong to Uy x U;. We shall adopt
the same convention in all our figures.

Example 3.2.3. Let U denote the disc

{@y) eR ||yl <1}

Let (z,y) be a point of U.
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3. Monday 13th January

Let € be a real number such that
0<e<l—|(z9).

Let Ux denote the open interval

Let Uy denote the open interval
Jy—Py+=2.

We have that z € Uy, and that y € Uy. Let (2/,3’) be a point of Ux x Uy. Then

GOl = (1L [ D
<[ (1t =21+ =) |
<z bl + || (22, 22|
= @9l + e
<l y)l+ (=)l

Thus Ux x Uy C U.

By Example [I.6.3 both Uy and U; belong to Og. We conclude that U belongs to Ogs.

Remark 3.2.4. There are very many subsets U of R? which belong to Og2. We just
have to be able to find a small enough ‘open rectangle’ around every point of U which
is contained in U.
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3.2. The product topology on R?

Example 3.2.5. An ‘open star’ belongs to Oge.

Example 3.2.6. An ‘open ladder’ belongs to Opa.

Example 3.2.7. An ‘open blob’ belongs to Ops.

Example 3.2.8. The open half plane given by
{(z,y) eR* |2 >0}

belongs to Ops.
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3. Monday 13th January

Example 3.2.9. The union of two ‘open infinite wedges’ belongs to Ops.

Example 3.2.10. Let X denote the subset of R? given by

{(z,y) eR* |0 <z < 1andy=0}.

Let x be any point of X.

No matter how small a rectangle we take around z, there will always be a point of R?
inside this rectangle which does not belong to X. Thus X does not belong to Op2.
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3.2. The product topology on R?

Example 3.2.11. Let X denote the ‘half open strip’ given by [0, 1] x |0, 1.

The solid part of the boundary of this figure belongs to X. Let (z,y) belong to either
of the vertical boundary lines. For example, we can take (z,y) to be (0, 3).

No matter how small a rectangle we take around (z,y), there will always be a point
inside this rectangle which does not belong to X. For example, if (z,y) is (0, %), there
will always be a point (2,%') inside this rectangle such that 2’ < 0. Thus X does not
belong to Og2.
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E3. Exercises for Lecture 3

E3.1. Exam questions

Task E3.1.1. Are the following subsets of R? open, closed, both, or neither with respect
to the topology Op2?

(1) The union of the set
{(z,y) eR*|0<z <land|y<1l—z}

and the set
{(z,y) eR* | -1 <z <0and |yl <z +1}.

(2) Unez Xn, where
Xn:{(n,y)ERZIyeR}.
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E3. Exercises for Lecture 3

(3) R x [0,1].

(4) The set consisting of the single point {(123,7)}.
(5) The union of the set
{(z,y) eR*| -1 <2 < 3 and ||(z,y)| < 1}

and the set
{(ac,y) € R? | % <z <land [[(z,y)| < 1}.

(6) The union of the set
{(z,y) €R? |y >0 and |(z,y)ll <1}

and the set [3, 5] x [0, 1].

(7) Upen {(z,9) e R [ ||(z,y)| <3—+}.

(8) The set
{(m,O)ER2|0§x§1}.
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E3.2. In the lecture notes

E3.2. In the lecture notes

Task E3.2.1. Do the same as in Task [E2.2.2] for the proof of Proposition

E3.3. For a deeper understanding

Task E3.3.1. Let (X,Ox) and (Y, Oy) be topological spaces. Let Vx be a subset of
X which is closed with respect to Ox, and let Vy be a subset of Y which is closed with
respect to (Y, Oy ). Prove that Vx x Vy is closed with respect to (X xY,Oxxy).

Task E3.3.2. Let (Xo,0x,) and (X1, Ox,) be topological spaces. Let Yy be a subset
of Xo, and let Y7 be a subset of Xj.

Let Oy, denote the subspace topology on Yy with respect to (Xo,Ox,). Let Oy,
denote the subspace topology on Y; with respect to (X1, Ox;,).

Let Oy,xy; denote the product topology on Yy x Y7 with respect to (Yp, Oy,) and
(Y1,Oy,). Let Og/o «y, denote the subspace topology on Yy x Y7 with respect to (Xo X
X1,0xxx,)-

Prove that Oy, xy, = Og’ony

Task E3.3.3. Let (Xo,0x,), (X1,0%,), and (X2,0x,) be topological spaces. Let
Oxyx(x1xX») denote the product topology on X x X1 x X with respect to (Xo, Ox,)
and (X1 x X2, 0x,xx,)- Let O(x,xx,)xx, denote the product topology on Xo x X7 x Xo
with respect to (Xo x X1,Ox,xx,) and (X2, Ox,).

Prove that OXQX(X1><X2) = O(XOXXl)XXQ'

Notation E3.3.4. We shall denote the topology O xx(x;xx2) = O(xoxx1)xx, on Xo X
X1 X X2 by Oxyxx;xX,-

Notation E3.3.5. We shall denote by Ops the topology Orxrxr On R3.

Remark E3.3.6. Let n € N. For every 1 < i < n, let (X;,Ox,) be a topological
space. By induction, it follows from Task that all the possible ways of equipping
X1 x...x X, with a topology, using only the topologies Ox,, for 1 < ¢ < n, and product
topologies built from these, coincide.

Notation E3.3.7. We shall denote this topology on X; x ... X, by Ox,x.. xx, -
Notation E3.3.8. We shall denote by Ogn the topology Op , g on R™.
—_——

n

E3.4. Exploration — metric spaces

Remark E3.4.1. Some of you may have met the notion of a metric before, for instance
in TMA4145 Linesere Metoder. Don’t worry if not, all material on metric spaces below,
and in future exercises, will not be examined. Certainly I recommend to focus on the
topics covered in the lectures, before looking into any of the exercises on metric spaces.
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E3. Exercises for Lecture 3

Nevertheless, those of you who are comfortable with the lectures may find the exercises
on metric spaces interesting, and useful in future courses. Though it will not be necessary,
you are welcome to make use of any of the exercises on metric spaces in the exam wherever
there is an opportunity for this.

Definition E3.4.2. Let X be a set. A metric on X is a map
Xx X —% 00,00

such that the following hold.

(1) For every x which belongs to X, we have that d(x,z) = 0.

(2) For all g, x1, and x9 which belong to X, we have that

d(zo, 1) + d(x1, x2) > d(z0, 22).

Remark E3.4.3. The condition of Definition is known as the triangle inequality.

Remark E3.4.4. If you have seen the definition of a metric in a previous course, a couple
of additional conditions were probably required to be satisfied. For many purposes, these
are not needed. In particular, we shall not need them in this section.

Definition E3.4.5. A metric space is a pair (X, d) of a set X and a metric d on X.

Notation E3.4.6. Let

R™ x R"

RTL

denote the map given by

(@1, n), Was o tn) = V(01— 21)2 4 o (Y — T0)?

In other words, dg~ is the usual notion of distance between a pair of points in R".

(xlayl

)
V(T —x0)? + (y1 — ?/0)2// Y1 — Yo
)

($07y0

>

1 — X9
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E3.4. Exploration — metric spaces

Task E3.4.7. Prove that dr~ defines a metric on R™, or look up a proof from an earlier
course.

Definition E3.4.8. Let (X,d) be a metric space. Let x € X, and let ¢ > 0 be a real
number. The open ball of radius € around x is the set B¢(x) given by

{' € X | d(z,2") < €}.

Task E3.4.9. Let (X, d) be a metric space. Let Oy denote the set of subsets U of X
with the property that, for every = € U, there is a real number € > 0 such that B¢(x) is
a subset of U. Prove that O, defines a topology on X.

Remark E3.4.10. We shall take the point of view that a metric is a way to construct a
topology. Once we have constructed this topology, we can forget about the metric from
whence it camel!

All the topological spaces that we shall be interested in can be constructed without
using a metric. For this reason, metrics will never appear in the lectures.

A characteristic feature of topology, as opposed to geometry, is that we shall often
be manipulating topological spaces in ways which change the distance between pairs of
points: squashing and stretching, for instance.

Nevertheless, there are many important areas of mathematics, such as differential
geometry, which merge both topological and geometrical ideas. Here one sometimes em-
phasises a construction which relies on a metric, sometimes emphasises a purely topolog-
ical construction, and often investigates the interplay between both worlds. The courses
TMA4190 Mangfoldigheter and MA8402 Lie-Grupper og Lie-Algebraer can lead in this
direction.

Remark E3.4.11. Though metrics will never appear in the lectures, many of the con-
cepts that we shall look at for arbitrary topological spaces can be thought of in other,
equivalent, ways for topologies coming from a metric. We shall explore this in future
exercises.

Task E3.4.12. Let n > 1. Prove that Og,, = Ogn.
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4.1. Examples of product and subspace topologies
Remark 4.1.1. We can combine our two ‘canonical’ ways of constructing new topolog-

ical spaces from old ones to obtain many interesting examples of topological spaces.

Notation 4.1.2. We denote by S! the set
{(z,9) e R* [ [[(z,9)l| = 1} .

We denote by Og: the subspace topology on S' with respect to (R?, O2).
Terminology 4.1.3. We refer to S' as the circle.

Example 4.1.4. By definition, a subset of S belongs to Qg1 if and only if it is the
intersection with S* of a subset of R? which belongs to Og2. The generic example is an
‘open arc’.

This is, for instance, the intersection with S of an ‘open rectangle’ in R?, which belongs

to Or2 by Example
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Since Og1 defines a topology on S!, we also have that disjoint unions of (possibly in-
finitely many) ‘open arcs’ belong to Og1.

This can also be demonstrated directly. The subset of S! given by the two ‘open arcs’
in the previous picture is, for instance, the intersection with S' with the subset of R?
depicted below, which belongs to Oge.

Alternatively, it is the intersection with S* with the subset of R? consisting of two disjoint
‘open rectangles’, depicted below.

Notation 4.1.5. We denote by Oz the product topology on I? with respect to two
copies of (I,0y).
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Terminology 4.1.6. We refer to I? as the unit square.

Remark 4.1.7. The topology Oz coincides with the subspace topology on I? with
respect to (R?, Og2). To prove this is the topic of Task

Example 4.1.8. Any of the open sets pictured in Examples [3.2.2] - [3.2.3] and [3.2.5] -
which ‘fit inside 1%’ belong to I?. For instance, an ‘open star’.

To see this, let (z,y) be a point of a subset U of I? of this kind.

______
- J—

We have the following.

(1) We can find an open interval Ux = ]a, b such that 0 < a < b < 1 and z € Ux.

_____

o1
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(2) We can find an open interval Uy = |a’,b'[ such that 0 < ¢’ < b < 1 and y € Uy.

_______
< - -

(3) We have that Ux x Uy C U.

_______
< - -

As we observed in Example both Ux and Uy belong to Or. Thus (1) - (3) together
demonstrate that U belongs to Oy2.

Example 4.1.9. Let U be the subset of I? given by

{(z,y) € P [|(z,9) < 3}

We have the following.
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(1) Let (z,y) be a point of U which does not lie on the boundary of I2.

As in Example we can find an ‘open rectangle’ around (x,y) which is a subset
of U.

(2) Let (x,y) be a point of U with z = 0.

O € .

Let Ux denote the half open interval

Let Uy denote the open interval

o= et
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o4

We have that (0,y) € Ux x Uy. As we saw in Example we have that Ux
belongs to O7. As we saw in Example we have that Uy belongs to Oj.
Moreover, let (2/,4) be a point of Ux x Uy . Arguing as in Example we have
that

N|—

1=, 9)]| <
Thus Ux x Uy C U.

(3) Let (x,y) be a point of U with y = 0.

Let € be a real number such that
0<e< % — .
Let Ux denote the open interval
}x — #, T+ # {
Let Uy denote the half open interval
=

We have that (z,0) € Ux x Uy. As we saw in Example m Ux belongs to Of.
As we saw in Example Uy belongs to Oj. Moreover, let (2/,4') be a point of
Ux x Uy. Arguing as in Example [3.2.3] we have that

N[ =

(", )| <



4.1. Examples of product and subspace topologies

Thus Ux x Uy C U.

We conclude that U belongs to Op2.

Remark 4.1.10. Many more subsets of I? with ‘segments on the boundary’ belong to
Op.

Example 4.1.11. A ‘truncated star’ belongs to Oj2.

Example 4.1.12. A ‘half open ladder’ belongs to Oy.

Example 4.1.13. The following subset of I? belongs to Q.
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Remark 4.1.14. We now introduce a few more important examples of product and
subspace topologies. Exploring them is the topic of Tasks [E4.1.3] - [E4.1.6]

Notation 4.1.15. Let D? denote the set

{(z,y) e R | |(z,y)ll <1}.

We denote by Op: the subspace topology on D? with respect to (R2, Og2).
Terminology 4.1.16. We refer to (D?,Op2) as the unit disc.
Notation 4.1.17. Let k£ be a real number such that 0 < k£ < 1. Let A; denote the set

{(z,y) e R |k < |[(z, )| <1}.

We denote by O4, the subspace topology on Ay, with respect to (R?, Ogs).
Terminology 4.1.18. We refer to (Ax, O4,) as an annulus.

Notation 4.1.19. We denote by Qg1 ; the product topology on S x I with respect to
(S1,041) and (I,0y).

% This cylinder is hollow!

Terminology 4.1.20. We refer to (S* x I, Og1;) as the cylinder.
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4.2. Definition of a continuous map

4.2. Definition of a continuous map

Notation 4.2.1. Let X and Y be sets. Let

X

Y

be a map. Let U be a subset of Y. We denote by f~1(U) the set

{xre X | f(x)eU}.

Terminology 4.2.2. We refer to f~1(U) as the inverse image of U under f.

Definition 4.2.3. Let (X, Ox) and (Y, Oy) be topological spaces. A map

X f

Y

is continuous if, for every U € Oy, the subset f~(U) of X belongs to Ox.
Remark 4.2.4. A map
!

R R

is continuous with respect to the standard topology on both copies of R if and only if
it is continuous in the € — ¢ sense that you have met in earlier courses. To prove this is

the topic of Task [E4.2.9]

4.3. Examples of continuous maps between finite topological

spaces

Example 4.3.1. Let X be a set with two elements {a,b}. Let Ox denote the topology

on X given by
{0, {p}, X}

In other words, (X,Oyx) is the Sierpinski interval. Let Y denote the set with three

elements {a’,b’,’}. Let Oy denote the topology on Y given by

{0.{a} {c}{d, AV, )Y}
Let

X f

Y

denote the map given by a — o' and b — /. We have the following.

(1) f7H@) =0.
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(2) f({a'}) =

(3) fH({c}) = {b}.
4) 1 ({d,c}) = {b}.
(5) fH{Y. ) =

6) fH(Y) =

We see that f~1(U) € Ox for every U € Oy. Thus f is continuous.

Example 4.3.2. Let (X,Ox) and (Y, Oy) be as in Example Let

Y

X

denote the map given by a’ + a, b’ — b, and ¢/ — a. We have that

by = {v'}

Thus g is not continuous, since {b} belongs to Ox, but {b'} does not belong to Oy

o8



E4. Exercises for Lecture 4

E4.1. Exam questions

Task E4.1.1. Are the following subsets of 12 open, closed, both, or neither, with respect
to 012 ?

(1) The disc given by

{@y) eR |- 19— <5}

Can you justify your answer rigorously?

(2) The set
{Oy)el?|t<y<i}.
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| |

{(z,y) €eI*|0<z <} and |y| <2z}

(4) The union of the set

and the set

{($,y)€f2|%§:v<1and ly| <2—2z}.

¢

Task E4.1.2. Let X denote the subset of R? consisting of the red and blue parts of the
flag below.

Let Ox denote the subspace topology on X with respect to (R?, Og2). For each of the
following, draw an example of a subset U of X which has the required property, and

which belongs to Ox. Use dashes to indicate which parts of the boundary U in your
picture are not to be thought of as belonging to U.
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(1) U intersects none of the rectangles except the upper right red rectangle; and U
does not intersect the boundary of this rectangle.

(2) U intersects all four red rectangles and both of the blue rectangles; but U does
not intersect the boundary of X.

(3) U intersects both of the blue rectangles; but U does not intersect any of the red
rectangles.

(4) U intersects only the horizontal blue rectangle, the upper left red rectangle, and
the lower left red rectangle; U contains a segment of the border of both the upper left
red rectangle and the lower left red rectangle; but U does not contain the entirety
of either of the upper left red rectangle or the lower left red rectangle.

(5) U intersects only the vertical blue rectangle and the two upper red rectangles; U
contains a segment on all four sides of both of the two upper red rectangles; but U
does not contain the entirety of either of the upper red rectangles.

Task E4.1.3. For each of the following, give an example of a subset U of the unit disc
D? which has the required property.

(1) U belongs to Op2 but, when viewed as a subset of R?, does not belong to Op.
(2) U belongs to Op: and, when viewed as a subset of R?, also belongs to Opa.

(3) U does not belong to Op: and, when viewed as a subset of R?, also does not
belong to Oge.

(4) U is closed with respect to Op2 but, when viewed as a subset of R?, is not closed
with respect to Op2.

(5) U belongs to Op2 and, when viewed as a subset of R?, is closed with respect to
OR2.

Task E4.1.4. Draw the subset U of the annulus A1 given by
2

(my) €A1 |t <a <1},
:

Does U belong to O4, 7 Does the set V' given by
2

{(x,y)eA%]%ngl}

belong to O4, 7
2
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Task E4.1.5. Let (A, Oy, ) be an annulus.

The horizontal line depicted below is a segment of the z-axis in R2.

For each of the following, give and draw an example of a subset U of Aj which has the
required property, and which belongs to Oy, .

(1) U contains a segment of the inner circle which is above the horizontal line, and
does not contain a segment of the inner circle which is below the horizontal line; U
contains a segment of the outer circle which is below the horizontal line, and does
not contain a segment of the outer circle which is above the horizontal line.

(2) U contains a segment of the inner circle which is above the horizontal line, and its
reflection in the horizontal line; U does not contain any segment of the outer circle.

(3) U contains the entire outer circle, but does not contain any point of the inner
circle.

(4) U contains neither a segment of the inner circle, nor a segment of the outer circle.

Task E4.1.6. Draw the following subsets U of the cylinder S x I, and decide whether
or not they belong to Og1;.

(1) St x {1}.
(2) U x {0}, where U is the subset of S! given by
{(z,y) e ST | -1 <y<i}.

(3) U x |4, %[, where U is the subset of S' given in (2).

62



E4.1. Exam questions

(5) 8 x]3,1].

{(z,y) e ST | L << iy,
and Uj is the subset of S' given by
{(z,y) e S' | -4 <z < —1}.
(7) (Uo x I)U (U x |3, 3[), where Up is the subset of S* given by
{(x,y)ES1 |%<x<i}
and Uj is the subset of S! given in (6).

Task E4.1.7. Let X be the set {a,b,c}. Let Ox denote the topology on X given by

{0, {b},{a, b}, {b, c}, X}

Let Y be the set {a/,¥/,c,d’,€'}. Let Oy denote the topology on Y given by
{0, {a'}, {} {d', &}, {V, Y {d W, YV ey {d 0 ey Y L dl e Y )

Which of the following maps

are continuous?
(1) a—d,b—e,c—d.
(2) a— e, b—e, c— (.
(3) a—d,b—d,c—d.
4) a—=bt, b—d, c—d.

Remark E4.1.8. It may save you some work to appeal to Task
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E4.2. For a deeper understanding

Definition E4.2.1. Let (X, O) be a topological space. Let B be a set of subsets of X
which belong to O. Then B is a basis for (X, ) if, for every subset of U of X which
belongs to O, there is a set {U;} jeJ of (possibly infinitely many) subsets of X which
belong to B such that U = ;¢ ; U;.

Task E4.2.2. Let B denote the set of open intervals. Prove that B is a basis for (R, Og).

Task E4.2.3. Let
B={lr—ex+¢€|z,ecRand e>0}.

Prove that B is a basis for (R, Og).

Remark E4.2.4. You may find it a little difficult at first to find the idea needed to
accomplish Tasks [4.2.2] and [E4.2.3] Don’t worry if so, feel free to ask me about it. The
idea will be used in different forms several times in the course.

Task E4.2.5. Let (X,0x) and (Y, Oy) be topological spaces. Let B be a basis for
(Y, Oy). Prove that a map

f
X ——Y

is continuous if and only if f~1(U) belongs to Ox for every subset U of Y which belongs
to B.

Corollary E4.2.6. Let (X, Ox) be a topological space. A map

X f

R

is continuous with respect to the standard topology Og on R if and only if f=!(]a, b])
belongs to Ox, for every open interval |a, b.

Proof. Follows immediately from Task and Task O

Definition E4.2.7. A map

R J

R

is continuous in the €-0 sense if, for all x,c,e € R with € > 0, thereisa d € R with § > 0
such that, if v — ¢| < 0, then |f(z) — f(¢)| <e.

Remark E4.2.8. This is the notion of a continuous map that you have met in earlier
courses.
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Task E4.2.9. Prove that a map

R f

R

is continuous with respect to the standard topology Or on both copies of R if and only
if it is continuous in the € — § sense. You may find it helpful to appeal to Task
and to Task [E4.2.5

Definition E4.2.10. Let (X, Q) be a topological space. Let S be a set of subsets of X
which belong to O. Let B denote the set of subsets U of X such that

U=U;,
jeJ

for a set {Uj;},.; of subsets of X which belong to S, where J is finite. Then § is a
subbasis for (X, Q) if B is a basis for (X, O).

Task E4.2.11. Let (X,Ox) and (Y, Oy) be topological spaces. Let S be a subbasis for
(Y, Oy). Prove that a map

S

X Y

is continuous if and only if f~1(U) belongs to Ox for every subset U of Y which belongs
to §. You may wish to appeal to Task [K4.2.5

Task E4.2.12. Let S denote the union of the set
{l—o0,z[ | z € R}

and the set
{Jz,00[ | z € R}.

Prove that S is a subbasis for (R, Or). You may wish to appeal to Task [E4.2.2

E4.3. Exploration — continuity for metric spaces
Definition E4.3.1. Let (X,dx) and (Y, dy) be metric spaces. A map

f
X ——Y

is continuous in the metric sense if, for all x € X, and all ¢ € R with ¢ > 0, there is a
0 € R with § > 0 such that f (Bs(z)) is a subset of B¢ (f(z)).
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Task E4.3.2. Let (X,d) be a metric space. Prove that for any x which belongs to X,
any € € R such that € > 0, and any 2’ which belongs to B(z), there is a 6 € R such that
d > 0, and such that Bs(z') is a subset of B(z). You may wish to let ¢ be e — d(x, /).

Re

You may then wish to observe that, for every z” which belongs to Bs(z), the following
holds, by definition of d.

d(z,2") < d(z,2") +d(2',2")
<d(z,2')+ 6
=d(z,2') +e—d(z,2)
=e.
Task E4.3.3. Let (X,dx) and (Y,dy) be metric spaces. Let Og4, be the topology on

X corresponding to dx of Task and let Og, be the topology on Y corresponding
to dy. Prove that a map

S

X Y

is continuous if and only if it is continuous in the metric sense. You may wish to proceed
as follows.

(1) Suppose that f is continuous in the metric sense. Suppose that U belongs to Og,, .
Suppose that z belongs to f~1(U). By definition of Oy, , observe that there is an
e € R with € > 0 such that B, (f(z)) is a subset of U.

(2) Since f is continuous in the metric sense, there is a § € R with § > 0 such that
f(Bs(x)) is a subset of B (f(x)). Deduce that f (Bs(x)) is a subset of U, and thus
that Bs(x) is a subset of f~1(U).
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(3) By definition of Oy, , we have that Bs(x) belongs to Oy, .
(4) By Task [E8.3.1] deduce from (2) and (3) that f is continuous.

(5) Suppose instead that f is continuous. Let € € R be such that e > 0. Suppose that
z belongs to X. By Task for every y which belongs to B, (f(z)), there is a
¢ € R with ¢ > 0 such that B¢(y) is a subset of B (f(z)). By definition of Oy, , we
have that B¢ (y) belongs to Og,.. By Task [E8.3.1] deduce that B, (f(x)) belongs to
Oy, -

(6) Since f is continuous, deduce that f~! (B, (f(z))) belongs to Oy, .

(7) By definition of Qg4 , deduce that there is a § € R with 6 > 0 such that Bs(z) is
a subset of f~1 (B, (f(z))).

(8) Deduce that f (Bs(z)) is a subset of B (f(x)). Conclude that f is continuous in
the metric sense.

Definition E4.3.4. Let X be a set. A metric d on X is symmetric if, for all ¢ and x;
which belong to X, we have that d(xg,x1) = d(z1, o).

Definition E4.3.5. A metric space (X,d) is symmetric if d is symmetric.

Definition E4.3.6. Let (X, d) be a metric space. Let Ag and A; be subsets of X. The
distance from Ay to Ay with respect to d is

inf {d(zo,x1) | x0 € Ap and z1 € A1 }.

Notation E4.3.7. Let (X,d) be a metric space. Let Ay and A; be subsets of X. We
denote the distance from Ay to A; with respect to d by d(Ag, A1). Suppose that x
belongs to X, and that A is a subset of X. We shall denote d ({x}, A) simply by d(z, A).

Remark E4.3.1. Let (X,d) be a symmetric metric space. Let A be a subset of X.
Suppose that a belongs to A. By (1) of Definition [E3.4.2] we have that d(a, A) = 0.

Task E4.3.8. Let (X, d) be a symmetric metric space. Let A be a subset of X. Suppose
that = belongs to X. Let X be equipped with the topology O4 corresponding to d of

Task Prove that the map

d(_7 A)
X

R

given by z — d(x, A) is continuous. You may wish to proceed as follows.

(1) By Task|E3.4.12, we have that Or = Og4,. By Task [E4.3.3] it therefore suffices to

demonstrate that d(—, A) is continuous in the metric sense.

(2) Suppose that a belongs to A. By definition of d, we have that d(y,a) < d(y,x) +
d(z,a). Since d(y, A) < d(y, a), we deduce that d(y, A) < d(y,x) + d(x,a).
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(3) Deduce that d(x,a) > d(y,A) — d(y,z). Since this inequality holds for all a
which belong to A, deduce that d(x, A) > d(y, A) — d(y, x). Deduce that d(y, A) <
d(z, A) +d(y, z).

(4) Carrying out exactly the same argument, but swapping = and y, observe that

(5) Let € € R be such that € > 0. Suppose that d(z,y) < e. Deduce from (3), (4),
and the fact that d is symmetric, that

d(z,A) —e <d(y,A) <d(z,A) +e.

(6) Deduce from (5) that d(Be(z),A) is a subset of B (d(z,A)). Conclude that
d(—, A) is continuous in the metric sense, as required.
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5.1. Geometric examples of continuous maps

Remark 5.1.1. Most of our continuous maps between geometric examples of topological
spaces will be constructed from polynomial maps

R R

in ‘canonical’ ways: by restrictions, products, and quotients. Don’t worry about this for
now. We shall take it for granted, leaving details for the exercises, and instead focus on
developing a geometric feeling for continuity.

Example 5.1.2. Let

D?xIT D?

be given by (z,y,t) — ((1 —t)x, (1 —t)y). Then f is continuous. To prove this is Task
[5.2.0

Remark 5.1.3. We may think of f as ‘shrinking D? onto its centre’, as t moves from 0
to 1.
We can picture the image of D? x {t} under f as follows, as ¢ moves from 0 to 1.

‘ )

o
= —
M= —
oo —

[
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Example 5.1.4. Let k£ € R. There is a continuous map

IL’SI

which can be thought of as travelling k times around a circle, starting at (0,1). To
construct f rigorously is the topic of Task

Remark 5.1.5. Let us picture f for a few values of k.

(1) Let k = 1. Then we travel exactly once around S?.

Don’t be misled by the picture. The path really travels around the circle, not
slightly outside it.

We may picture f ([0,%]) as ¢ moves from 0 to 1 as follows.

Recall from Examples that a typical open subset U of S! is an ‘open arc’

o
= —
N|—= —
=l —

We have that f~!(U) is an open interval as follows.



5.1. Geometric examples of continuous maps

In particular, f~!(U) belongs to O7. Thus, even though we have not yet rigorously
constructed f, we can intuitively believe that it is continuous.

(2) Let k = 2. Then we travel exactly twice around S*.

@ Again, don’t be misled by the picture. The path really travels twice around the
circle, thus passing through every point on the circle twice, not in a spiral outside
the circle.

We may picture f ([0,%]) as ¢ moves from 0 to 1 as follows.

O010101®

Let U denote the subset of S' given by the ‘open arc’ depicted below.

s}

= —

= —
Bl —
—_
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Then f~1(U) is a disjoint union of open intervals as follows.

S
= —
Nl —
oo —
=

In particular, f~1(U) belongs to O;. Thus, again, even though we have not rigor-
ously constructed f, we can believe intuitively that it is continuous.

(3 Let k= % Then we travel exactly one and a half times around S*.

We may picture f ([0,%]) as ¢ moves from 0 to 1 as follows.

O OO 0OC

Let U denote the subset of S given by the ‘open arc’ depicted below.

= —
M= —
o —
—_

Then f~1(U) is a disjoint union of open intervals as follows.
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= —
M= —
=l —
[

In particular, f~1(U) belongs to O;. Thus, once more, even though we have not
rigorously constructed f, we can believe intuitively that it is continuous.

Example 5.1.6. Let
f

I ——1

be given by ¢t — 1 —t. Then f is continuous, by Task

Remark 5.1.7. We may picture f as follows.

In particular, f~1(U) belongs to O;. Thus, even though this is not quite a proof yet, we
can intuitively believe that f is continuous.

Example 5.1.8. There is a map
I —— ¢!

travels around the circle at half speed from (0,1) to (1,0) for 0 < ¢ < 1, and at normal
speed from (0, —1) to (0, 1) for § < ¢ < 1. It is not continuous. To construct f rigorously,
and to prove that it is not continuous, is the topic of Task
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Remark 5.1.9. We may picture f as follows.

Let U denote the subset of S' given by the ‘open arc’ depicted below.

Then f~1(U) is a half open interval as follows.
o1 s
1 3 1 1

In particular, f~1(U) does not belong to O;. Thus we can see intuitively that f is not
continuous.

Example 5.1.10. There is a map

I—— D2

vl

1

which begins at —%, ), travels around an arc of radius j centred at (—%,O) to

1

(—5, —?), jumps to (%, @), and then travels around an arc of radius % centred at

(%,0) to (%, —@) It is not continuous. To construct f rigorously, and to prove that
it is not continuous, is the topic of Task

Remark 5.1.11. We may picture f as follows.
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Let U denote the subset of D? given by the ‘open rectangle’ depicted below.

Then f~1(U) is a half open interval as follows.

= —
N[ =
oo —
=

In particular, f~1(U) does not belong to O;. Thus we can see intuitively that f is not
continuous.

Remark 5.1.12. Intuitively, continuous maps cannot ‘jump’!

Example 5.1.13. Let

R

be the map given by

Then f is continuous. To prove this is the topic of Task [£5.2.10

Remark 5.1.14. In particular, continuous maps can have ‘sharp edges’. In differential
topology, maps are required to moreover be smooth: sharp edges are disallowed! The

courses MA3402 Analyse pa Mangfoldigheter and TMA4190 Mangfoldigheter both lead
towards differential topology.

75



5. Monday 20th January

5.2. Inclusion maps are continuous

Terminology 5.2.1. Let X be a set, and let A be a subset of X. We refer to the map
4—1 5 x
given by x — = as an inclusion map.

Proposition 5.2.2. Let (X, Ox) be a topological space. Let A be a subset of X, and let
A be equipped with the subspace topology O with respect to (X, Ox). The inclusion
map

A —1 5 x

is continuous.

Proof. Let U be a subset of X which belongs to Ox. Then i~(U) = ANU. By definition
of O 4, we have that AN U belongs to O4. We conclude that i~ (U) belongs to O4. O

Notation 5.2.3. Let X, Y, and Z be sets. Let

X L Y
and
Y g Z
be maps. We denote by
gof

the composition of f and g, given by x — g (f(x)).

5.3. Compositions of continuous maps are continuous

Proposition 5.3.1. Let (X,Ox), (Y,Oy), and (Z,Oz) be topological spaces. Let

and

be continuous maps. The map
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5.4. Projection maps are continuous
golf

is continuous.

Proof. Let U be a subset of Z which belongs to Oz. Then

(go f) N U)={z e X |g(f(x)) €U}
~ {re X |f@) e g 1)
=1 gU)).

Since g is continuous, we have that ¢g=1(U) belongs to Oy. We deduce, since f is
continuous, that f~! (¢71(U)) belongs to Ox. Thus (go f)~'(U) belongs to Ox. O

5.4. Projection maps are continuous
Notation 5.4.1. Let X and Y be sets. We denote by

X xY LN X
the map given by (z,y) — x. We denote by

2
X xY P

Y

the map given by (z,y) — v.
Terminology 5.4.2. We refer to p; and po as projection maps.

Proposition 5.4.3. Let (X,0x) and (Y, Oy) be topological spaces. Let X x Y be
equipped with the product topology Ox«y. Then

Xxy

X

and

D2
XxY ——Y

are continuous.

Proof. Suppose that Ux is a subset of X which belongs to Ox. Then
p'(Ux) =Ux x Y.

We have that Ux x Y belongs to Oxxy. Thus p; is continuous.
Suppose now that Uy is a subset of Y which belongs to Oy. Then

Py (Uy) = X x Uy.

We have that X x Uy belongs to Oxxy. Thus ps is continuous. O
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5. Monday 20th January

Remark 5.4.4. We can think of

Ixi -2

as the map (x,y) — (x,0). We can picture this as follows.

(0,1) (1,1)

(0,0) (1,0)

We can think of

IXILI.

as the map (x,y) — (0,y). We can picture this as follows.

(0,1) (1,1)

(0,0) (1,0)
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E5. Exercises for Lecture 5

E5.1. Exam questions

Remark E5.1.1. You may find it helpful to carry out Tasks [E£5.2.3] — [E5.2.5] before
attempting the tasks in this section.

Terminology E5.1.2. Let X be a set. We refer to the map

X—X

given by & — x as the identity map from X to itself.

Task E5.1.3. Let (X, Ox) be a topological space. Prove that the identity map
id
X s x

is continuous.
Terminology E5.1.4. Let X and Y be sets. A map

X S

Y

is constant if f(x) = f(2') for all z,2’ € X.
Task E5.1.5. Let (X,Ox) and (Y, Oy) be topological spaces. Let

f
X ——Y

be a constant map. Prove that f is continuous. You may wish to proceed as follows.

(1) Observe that if f is constant, then there is a y € Y such that f(z) = y for all
reX.

(2) Let U be a subset of Y which belongs to Oy. Determine f~(U) in the cases that
y € U, and in the case that y € U.

Terminology E5.1.6. Let X and Y be sets, and let A be a subset of X. Let

f
X ——Y
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E5. Exercises for Lecture 5

be a map. The restriction of f to A is the map
A——Y

given by = — f(x).
Remark E5.1.7. In other words, the restriction of f to A is the map
foi

where

is the inclusion map.

Task E5.1.8. Let (X,Ox) and (Y, Oy) be topological spaces. Let

X

Y

be a continuous map. Let A be a subset of X, and let A be equipped with the sub-
space topology with respect to (X, Ox). Prove that the restriction of f to A defines a
continuous map

A——Y.
Task E5.1.9. Let (X,Ox) and (Y, Oy) be topological spaces. Let A be a subset of Y,

and let A be equipped with the subspace topology O4 with respect to (Y, Oy). Prove
that if

f
X —Y
is a continuous map such that f(X) C A, then the map
X—A

given by z — f(z) is continuous.

Task E5.1.10. Let (X, Ox) and (Y, Oy) be topological spaces. Let A be a subset of Y/,
and let A be equipped with the subspace topology O4 with respect to (Y, Oy). Prove
that if

is a continuous map, then the map
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given by z — f(z) is continuous.

Terminology E5.1.11. Let X be a set. We refer to the map
X L X xX

given by x — (x,z) as the diagonal map.

Task E5.1.12. Let (X,Ox) be a topological space. Let X x X be equipped with the
product topology Ox xx with respect to two copies of (X, Ox). Prove that

A
X— X xX
is continuous. You may wish to proceed as follows.

(1) Let Uy and U; be subsets of X which belong to Ox. Prove that A~Y(Uy x Uy)
belongs to Ox.

(2) Let U be a subset of X x X which belongs to Oxx . Prove that A~}(U) belongs
to Ox, by appealing to (1) and to Task [E8.3.1

Task E5.1.13. Let (X,Ox) and (Y, Oy) be topological spaces. Prove that a map

¥ S

Y

is continuous if and only if f~!(V) is closed with respect Ox, for every subset V of Y’
which is closed with respect to Oy.

Task E5.1.14. Let X be a set. Let Ox be the discrete topology on X. Let (Y, Oy) be
a topological space. Prove that any map

S

X Y

is continuous.

Task E5.1.15. Let (X,Ox) be a topological space. Let Y be a set. Let Oy be the
indiscrete topology on X. Prove that any map

¥ S

Y

is continuous.
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E5.2. In the lecture notes

Task E5.2.1. Let X, Y, and Z be sets. Let

and

be maps. Prove that
{reX|g(flx) eUt={reX|flx)eg ' (U)}.
This was appealed to in the proof of Proposition [5.3.1

Task E5.2.2. Let (X, Ox and (Y, Oy) be topological spaces.

(1) Let Ux be a subset of X which belongs to Ox. Check that you understand why
Ux x Y belongs to Oxxy.

(2) Let Uy be a subset of Y which belongs to Oy. Check that you understand why
X x Uy belongs to Oxxy.

These observations were appealed to in the proof of Proposition [5.4.3

Task E5.2.3. Do the same as in Task for the proof of Proposition [5.2.2
Task E5.2.4. Do the same as in Task for the proof of Proposition [5.3.1
Task E5.2.5. Do the same as in Task for the proof of Proposition

Task E5.2.6. Prove that the map
f
D?x—— D?
of Example [5.1.2]is continuous. You may wish to proceed as follows.

(1) Express the map

Jo

R3 R

given by (z,y,t) — (1 — t)x as a composition of four maps.
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E5.2. In the lecture notes

(I) The map
R3 R?
given by (x,y,t) — (x,t).
(IT) The twist map
R2 R?
given by (z,y) — (y,2).
(III) The map
R2 R?
given by (z,y) — (1 — z,y).
(IV) The map
R? R

given by (z,y) — zy.

Appealing to Proposition Task Task [E5.3.19] Task Task
15.3.11) and Proposition deduce that fj is continuous.

(2) In a similar way, prove that the map

f1

R3 R

given by (x,y,t) — (1 — t)y is continuous.

(3) View D? x I as equipped with the subspace topology with respect to (R3, Ogs).
Appealing to Task [E5.1.8] deduce from (1) that the map

Jo

D?Zx1T R

given by (z,y,t) — (1 — t)x is continuous, and deduce from (2) that the map

f1

D?x 1T R

given by (x,y,t) — (1 — t)y is continuous,
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(4) Appealing to Task [E5.3.17, deduce from (3) that the map

D?x1I R?

given by (z,y,t) — ((1 — t)x, (1 — t)y) is continuous.
(5) Appealing to Task [E5.1.9) conclude from (4) that f is continuous.

Task E5.2.7. Let k£ € R. Construct a continuous map

I

Sl

which travels around the circle k times, as in Example You may wish to proceed
as follows.

(1) By Task [E5.3.14] observe that the map

I —— [0, k]

given by ¢t — kt is continuous.

(2) By Task [E5.3.27 and Task [E5.1.8 observe that the map

[0,k] —— st
given by t — ¢(t) is continuous, where

R

Sl

is the map of Task
(3) Appeal to Proposition [5.3.1]

Task E5.2.8. Use the map

R St

of Task [E5.3.27] to construct the map
I—— st

of Example [5.1.8] Prove that f is not continuous.
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E5.2. In the lecture notes

Task E5.2.9. Use the map

R

Sl
of Task [E5.3.27] to construct the map
I——— D2

of Example [5.1.10} Prove that f is not continuous.

Task E5.2.10. Let

R

D2

be the map of Example[5.1.13] Prove that f is continuous. You may wish to proceed as
follows.

(1) By Task [E5.1.5, observe that the map
R

given by z — (—3,0) is continuous.

(2) By Task [E5.1.3] Task [E5.1.5, and Task [E5.3.17] observe that the map

[=5,0] —— p?

given by x — (x,0) is continuous.

(3) By Task [E5.1.3] Task [E5.1.5] and Task [E5.3.17, observe that the map

[0,5] —— p?

given by = — (0, z) is continuous.

(4) By Task [E5.1.5] observe that the map

J3,00] —— D?

given by z — (0, 1) is continuous.

(5) Appeal to (2) of Task [E5.3.23
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E5.3. For a deeper understanding

Assumption E5.3.1. Throughout this section, let R be equipped with the standard
topology Og.

Remark E5.3.2. The proofs needed for Tasks[E5.3.5|-[E5.3.7] and Task all follow
the pattern of the proof of the following proposition, which is given to help you along.

Proposition E5.3.3. Let (X, Ox) be a topological space. Let

X f

R

be a continuous map. Then the map
£

given by = — |f(x)| is continuous.

Proof. By Corollary to prove that f is continuous, it suffices to prove that
|71 (Ja, b]) belongs to Ox, for every open interval ]a, b[. We have that

A7 Qa0 = {2’ € X | |f(2)] €]a, b}

={d' e X | f(@) €la,b[}U{a’ € X |—f(z') € a,b[}

={d' e X | f(&') €la,b[} U{a’ € X | f(2') € ]-b, —a[}

= (Ja, ) U f7H(=b, —al) -
Both ]a,b] and |—b, —a[ belong to Og. Since f is continuous, we deduce that both
f~t(a,b]) and f=1(]—b, —a[) belong to Ox. Since Ox is a topology on X, this implies
that

FH(a, b U f7H (1=b, —al)

belongs to Ox. Hence |f|™" (Ja, ) belongs to Ox. O
Remark E5.3.4. In a nutshell, the proof of Proposition proceeds by expressing
! f _1‘ (Ja, b)) as a union of inverse images under f of subsets of R which belong to Og. It

is this idea that is also at the heart of the proofs needed for Tasks [E5.5.5] - [E5.3.7 and
Task [£5.3.9

Task E5.3.5. Let (X, Ox) be a topological space. Let

X

R

be a continuous map. Prove that, for any k € R, the map

k
X f

R

given by x — k- f(x) is continuous. You may wish to proceed by considering separately
the cases k=0, k > 0, and k£ < 0.
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Eb5.3. For a deeper understanding

Task E5.3.6. Let (X, Ox) be a topological space. Let

be continuous maps. Prove that the map

f+g

given by x — f(x) + g(x) is continuous. You may wish to proceed as follows.

(1) Observe that, by Task [E4.2.12|and Task|[E4.2.11} to prove that f+ g is continuous,
it suffices to prove that for any y € R, the sets

(f+9) " (—o0,90)

and

(f +9)~" (Jy, 0[)
belong to Ox.

(2) Prove that {z € X | f(z) + g(z) < y} is equal to

U ({eex|f@) <y-y}n{zeX|ga) <y}),

y'€R

and that {z € X | f(z) + g(x) > y} is equal to

U {zex|f@>y-v}n{zeX|ga)>y}).
y'eR
Task E5.3.7. Let (X, Ox) be a topological space. Let

X f

R

be a continuous map, with the property that f(z) > 0 for all x € X. Prove that the
map

f2

X R

given by x — f(z) - f(x) is continuous.
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Task E5.3.8. Let

X R

be continuous maps. Prove that the map

ng

R

given by z — f(x) - g(x) is continuous. You may wish to proceed as follows.
(1) Observe that fg is
L1 +92 =17 - 9P).
(2) Appeal to Proposition and Tasks [E5.3.5 - [E5.3.7]
Task E5.3.9. Let (X, Ox) be a topological space. Let
f

X

R

be a continuous map. Suppose that f(x) # 0 for all x € X. Prove that the map
1

X

R

given by z — ﬁ is continuous. You may wish to proceed as follows.

(1) Observe that, by Task [E4.2.12{ and Task [E4.2.11] to prove that % is continuous,
it suffices to prove that for any y € R, the sets

(5) (s

and

belong to Ox.

(2) Prove that, for all y € R, the set
{a: € X | 1 < y}
f(x)
is equal to the union of
{z e X[ f(x)>0}n{zeX|(yf)(x)>1}

and
{freX|f(z)<0}n{zeX|(yf) (=) <1}.

88



Eb5.3. For a deeper understanding

(3) Prove that, for all y € R, the set

1
{a: € X| 7@ > y}
is equal to the union of
{z € X | f(z) >0} N{zeX|(yf) () <1}

and
{freX|f(z)<0in{zeX|(yf)(z)>1}.

(4) Appeal to Task [E5.3.5
Task E5.3.10. Let (X, Ox) be a topological space. Let

X R
g
be continuous maps. Suppose that g(z) # 0 for all z € X. Prove that the map

b
g

X R

iven by 2 — 22 is continuous. You may wish to appeal to two of the previous tasks.
& Y 9()

Task E5.3.11. Let R? be equipped with the topology Og2. Prove that the map

R? R

given by (x,y) — xy is continuous. You may wish to appeal to Proposition and
to Task [E5.3.8

Task E5.3.12. Let R? be equipped with the topology Og2. Prove that the map

R x R

R

given by (z,y) — x +y is continuous. You may wish to appeal to Proposition and
to Task [[25.3.6

Terminology E5.3.13. Let X and Y be subsets of R. Let

f
X ——Y

be a map given by
T kyx™ + kn_lxnil + ...+ kiz + ko,

where k; € R for all 0 <7 < n. We refer to f as a polynomial map.
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Task E5.3.14. Let X be a subset of R, equipped with the subspace topology Ox with
respect to (R, Og). Let Y also be a subset of R, equipped with the subspace topology
Oy with respect to (R, Or). Prove that every polynomial map

¥ S

Y

is continuous. You may wish to proceed as follows.

(1) Demonstrate that a polynomial map

R f

R

is continuous. For this, you may wish to proceed by induction, appealing to Task

Task Task and Task
(2) Appeal to Task [E5.1.8[and to Task [E5.1.9

Corollary E5.3.15. Let X be a subset of R, equipped with the subspace topology
Ox with respect to (R,Ogr). Let Y also be a subset of R, equipped with the subspace
topology Oy with respect to (R, Or). Let

f
X —Y
be a map given by z — gi‘gg, where g (x) # 0 for all x € X. Suppose that gg and g1 are
polynomial maps. Then f is continuous.

Proof. We can view f as a map

X

R.

It follows immediately from Task [E5.3.14] and Task [E5.3.10| that f’ is continuous. By
Task we conclude that f is continuous. O

Task E5.3.16. Let (X, Ox) be a topological space. Let

X

R

be a continuous map such that f(x) > 0 for all x € X. Prove that, for any n € N, the
map

i
X

R

given by x + {/f(x), where ¥/f(x) denotes the positive n' root of f(x), is continuous.
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Task E5.3.17. Let (Xo, Ox,), (X1, Ox,), (Yo, Oy,), and (Y7, Oy; ) be topological spaces.
Let

Xo L Yo
and
X1 L Y;
be continuous maps. Prove that the map
fox fi

X0><X1

Yox Y

given by (xg,x1) — (fo(xo), f1(z1)) is continuous.
Terminology E5.3.18. Let X and Y be sets. We refer to the map

XxY "L 5yxX

given by (z,y) — (y,x) as the twist map.

Task E5.3.19. Let (X,0Ox) and (Y, Oy) be topological spaces. Prove that the twist
map

T

X xY Y x X

is continuous. You may wish to appeal to Task

Task E5.3.20. Let (X, Ox), (Yo, Oy,), and (Y1, Oy,) be topological spaces. Let

x
and
¥ fi v,
be continuous maps. Prove that the map
fox fi Yo x i

given by x — (fo(x), fi(x)) is continuous. You may wish to appeal to Task [E5.1.12 and
Task
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Task E5.3.21. Let (X,Ox) and (Y, Oy) be topological spaces. Let

X

Y
be a continuous map. Let A be a subset of Y, and let A be equipped with the subspace
topology with respect to (Y, Oy). Let

1

A——Y

be the inclusion map. Prove that a map

x4

is continuous if and only if the map
iof

is continuous.

Notation E5.3.22. Let X and Y be sets. Let {A;},_; be a set of subsets of X such
that X =J..; 4;. Suppose that, for every j € J, we have a map

[

jeJ

A; Y.

Moreover, suppose that, for all jo, j1 € J, the restriction of f;, to A;, N A;, is equal to
the restriction of f;, to A;, N Aj,. We then obtain a map

X

Y

given by x — f;(x) if z € Aj.

Task E5.3.23. Let (X,Ox) and (Y, Oy) be topological spaces. Let {4;},.; be a set
of subsets of X such that X = UjeJ Aj. For every j € J, let A; be equipped with the
subspace topology with respect to (X, Ox). Suppose that, for every j € J, we have a
continuous map

4, [

Y.

Moreover, suppose that, for all jo,j1 € J, the restriction of f;, to Aj, is equal to the
restriction of f;, to Aj . Let

S

X Y

denote the map of Notation [E5.3.22 corresponding to the maps { f; }j e

92



Eb5.3. For a deeper understanding

(1) Suppose that A; belongs to Ox for every j € J. Prove that f is continuous. You
may wish to appeal to Task

(2) Suppose that {A;};cs is locally finite with respect to O, and that A; is closed
with respect to Oy, for every j € J. Prove that f is continuous. You may wish to

appeal to Task

(3) Suppose that J finite. Give an example to demonstrate that if we do not assume
that Aj; is closed with respect to Ox for every j € J, then f is not necessarily
continuous.

(4) Suppose that A; is closed with respect to Ox for every j € J. Given an example
to demonstrate that, if we do not assume that {A;}c s is locally finite with respect
to Ox, then f is not necessarily continuous.

Remark E5.3.24. Taking into account Remark [E8.3.6] we have that if .J is finite, and
Aj is closed with respect to Ox, for every j € J, then f is continuous.

Remark E5.3.25. The result of (1) and (2) of Task [E5.3.23|is sometimes known as the
glueing lemma or pasting lemma. Continuous maps constructed by means of (1) and (2)
of Task [E5.3.23| are sometimes said to be defined piecewise.

Notation E5.3.26. Given y € [—1,1], let

(0,1)
kz/-,
(Oy) ° '( ’ y)
(0. -1)
Let
R sl

be the map defined as follows.
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(1) Suppose that z € [0,3]. Let y = 1 — 4z. We define ¢(z) to be (ky,y). We can

9

picture ¢ on [0, %] as follows.
(2) Suppose that « € [,1]. Let y = 4z — 3. We define ¢(z) to be (—ky,y). We can

@

picture ¢ on [0, 1] as follows.
(3) Suppose that x € [n,n + 1], for some n € Z. We define ¢(x) to be ¢p(x —n). We
can picture ¢ on [0, 2], for instance, as follows.

@

Sl

Task E5.3.27. Prove that the map

R

of Notation [E5.3.20] is continuous. You may wish to proceed as follows.

(1) Let [O, %] be equipped with the subspace topology with respect to (R, Or). Ob-
serve that by Task [E5.3.14 and Task the map

given by y — ky is continuous.
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Eb5.3. For a deeper understanding

(2) By Task [E5.3.17, deduce from (1) that the map

fxid

R2
given by y — (ky,y) is continuous. By Task [E5.1.9| deduce that the map
[0,5] —— 5"

given by = — ¢(x) is continuous.

(3) Let [%, 1] be equipped with the subspace topology with respect to (R, Og). As in
(1) and (2), demonstrate that the map

1
[3:1] —— st
given by = — ¢(x) is continuous.

(4) Let the unit interval I be equipped with the topology O;. By (2) of Task [E5.3.23
deduce from (2) and (3) that the map

[—— gt

given by z — ¢(z) is continuous.

(5) Let n € Z. Let [n,n + 1] be equipped with the subspace topology with respect to
(R, Ogr). By Task [E5.3.14] observe that the map

[n,n+ 1] g

I

given by x — = — n is continuous.

(6) Let n € Z. By Proposition deduce from (4) and (5) that the map

[n,n + 1] St

given by x — ¢(x — n) is continuous.

(7) By (2) of Task [E5.3.23 deduce from (6) that

R St

is continuous.
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Remark E5.3.28. The map ¢ allows us to construct paths around a circle without
using, for instance, trigonometric maps. Sine and cosine do define continuous maps, but
their construction, and the proof that they are continuous, is much more involved. We
shall explore this in a later task.

Task E5.3.29. Let (X, Ox) and (Y, Oy) be topological spaces. Suppose that x belongs
to X. Let X\ f~1 ({f(2)}) be equipped with the subspace topology Ox\f-1({f(x)}) With
respect to (X, Ox). Let

S

X Y

be a map. Suppose that f~! ({f(z)}) is closed in X with respect to Ox. Let Y\ {f(z)}
be equipped with the subspace topology Oy f(;)} With respect to (Y,Oy). Suppose
that the map

X\ S @)D —L Y\ { (@)}

given by 2’ — f(2') is continuous. Prove that f is continuous. You may wish to proceed
as follows.

(1) Let V be a subset of Y which is closed with respect to Oy. Suppose that f(x)
does not belong to V. Then V is a subset of Y\ {f(x)}. Thus f~4(V) = g~ 1(V).
Since g is continuous, deduce by Task ?? that f~1(V) is closed in X with respect
to OX.

(2) Suppose that f(z) belongs to V. Then
X\ V)= 1Y \Y)
=g '(Y\V).

Since V is closed in Y with respect to Oy, we have that Y\ V belongs to Oy . Hence
Y \ V belongs to Oy (). Since g is continuous, we thus have that g H Y \V)
belongs to Ox\ f-1({f(x)})- Deduce that X\ f~Y(V) belongs to Ox\f1({f(@)})-

(3) Since f= ({f(z)}) is closed in X with respect to O, we have that X\ f~ ({f(z)})
belongs to Ox. By Task (1) and (2), deduce that X\ f~(V) belongs to Ox.
Thus we have that f~1(V) is closed in X with respect to Oy.

(3) By Task ??, conclude from (1) and (2) that f is continuous.
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6. Tuesday 21st January

6.1. Quotient topologies

Notation 6.1.1. Let X be a set, and let ~ be an equivalence relation on X. We denote
by X/~ the set
{lz] |z € X}

of equivalence classes of X with respect to ~.

Notation 6.1.2. We denote by

X 44114» )(/N

the map given by x — [z].
Terminology 6.1.3. We refer to 7 as the quotient map with respect to ~.

Definition 6.1.4. Let (X,Ox) be a topological space. and let ~ be an equivalence
relation on X. Let Oy, denote the set of subsets U of X/~ such that 7~(U) belongs
to Ox.

Proposition 6.1.5. Let (X,Ox) be a topological space, and let ~ be an equivalence
relation on X. Then (X/~,Ox/.) is a topological space.

Proof. We verify that each of the conditions of Definition holds.

(1) We have that 7=1(()) = 0. Since Ox is a topology on X, we have that () belongs
to Ox. Thus () belongs to Ox/m-

(2) We have that 7—}(X/~) = X. Since Oy is a topology on X, we have that X
belongs to Ox. Thus X belongs to Ox.

(3) Let {U;} be a set of (possibly infinitely many) subsets of X/~ which belong to
Ox/~- By definition of Ox/., we have that 7~ 1(U;) belongs to Ox. Since Oy is a
topology on X, we deduce that (J;c; 7~*(U;) belongs to Ox. We have that

71 (U UZ) = J= ().

icl el

Thus 71 (Uiel Ui) belongs to Ox. We conclude that (J;c; U; belongs to Ox...
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(4) Let Up and Uy be subsets of X/~ which belong to Ox/.. By definition of Ox/.,
we have that m=1(Up) and 7~1(U;) belong to Ox. Since Oy is a topology on X,
we deduce that 7=1(Up) N 7w~1(U;) belongs to Ox. We have that

a7l (UO N Ul) = 7T_1(U0) N 7T_1(U1).
Thus 7= (Uy N Uy) belongs to Ox. We conclude that Uy N Uy belongs to Ox/n-
(]

Remark 6.1.6. The proof of Proposition does not appeal to anything specific to
X/~ or to . It relies only upon properties of 7~ which hold for any map.

Remark 6.1.7. Although we chose not to, it is possible to define the subspace and
product topologies in a similar way. To investigate this is the topic of Task [E6.2.1] and
Task [E£6.2.2]

Terminology 6.1.8. Let (X, Ox) be a topological space, and let ~ be an equivalence
relation on X. We refer to Ox/. as the quotient topology upon X/~.

Remark 6.1.9. Let (X, Ox) be a topological space, and let ~ be an equivalence relation
on X. Let X/~ be equipped with the quotient topology Ox/... Then
X L, X / ~

is continuous. This is immediate from the definition of O/

Remark 6.1.10. This introduces us to a more conceptual way to understand the defi-
nition of a subspace topology and of a product topology. The subspace topology ensures
exactly that an inclusion map is continuous. The product topology ensures exactly that
the projection maps are continuous. This is a consequence of Task and Task
[£6.2.2

6.2. Finite example of a quotient topology

Example 6.2.1. Let X = {a,b, ¢} be a set with three elements. Let Ox be the topology
on X given by
{0,{a},{c},{a,b},{a,c}, X}.

Let ~ be the equivalence relation on X generated by a ~ c¢. Then
X/~ = {a’,b’} ,
where @’ = [a] = [¢] and b’ = [b]. The map
X L, X /N
isgiven by a — @/, b+ ', and ¢ — @’. In order to determine which subsets of X/~ belong

to Ox/., we have to calculate their inverse images under 7. We know from Proposition
that and () and X/~ belong to Ox/.. Thus only the following calculations remain.
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(1) We have that 7! ({a'}) = {a,c}. Since {a,c} belongs to Oy, we deduce that
{a’} belongs to Ox/..

(2) We have that 7= ({#'}) = {b}. Since {b} does not belong to Oy, we deduce that
{v'} does not belong to Ox/...

We conclude that
OX/N = {@, {G,/},X} .

Remark 6.2.2. Throughout the course, we shall make use the notion of an equivalence
relation generated by a relation. A formal discussion can be found in However, you
can harmlessly ignore it!

The relations that we shall consider express all that is important about our equivalence
relations: which elements are to be identified with which, when we pass to X/~. For
instance, in Example the relation a ~ ¢ expresses that a is to be identified with ¢
when we pass to X/~, and that no other identifications are to be made.

Formally, in order to construct X/~, we have to ensure that the conditions of Defini-
tion are satisfied. It is this that we achieve by passing to the equivalence relation
generated by a relation. In full detail, the equivalence relation generated by a ~ c is
given by a ~a,b~b,c~c,a~c, and c ~ a.

In all the examples which we shall consider, it is entirely straightforward to write
down the equivalence relation generated by our relation. Since this would be tedious,
and would not lend any insight into the corresponding quotient topology, we shall not
do so.

6.3. The quotient topology obtained by glueing together the
endpoints of |

Example 6.3.1. Let ~ be the equivalence relation on I generated by 0 ~ 1.
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Remark 6.3.2. Let U be the subset of I/~ given by

{t1i<t<3}.

Then 7~ 1(U) is the open interval |1, .

| |

td !
In particular, as in Example we have that 7=1(U) belongs to O;. Thus U belongs
to O[/N.

Remark 6.3.3. Let U be the subset of I/~ given by

(105t < Ui <i<1).
In particular, we have that [0] = [1] € U.

Then 7~ 1(U) is [0, L [U]%,l}.
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6.3. The quotient topology obtained by glueing together the endpoints of I

| | | |

0 % 1
As in Example we have that [0, %[ belongs to O7. As in Example we have
that ]%, 1] belongs to O7. Thus 7~ (U) belongs to O;. We conclude that U belongs to

Op/~-
Remark 6.3.4. Let U be the subset of I/~ given by

{1 f<t<1}.

Then 7~ 1(U) is {0} U] L, 1].

o
0l~1 —
—

The subset {0} U | %, 1] of I does not belong to O;. Thus U does not belong to Of /-

Let (X, Ox) be a topological space, and let ~ be an equivalence relation on X. Let

U be a subset of X which belongs to Ox. Then 7w (U) does not necessarily belong
to Oy/~. The crucial point is that 7! (z (U)) is not necessarily equal to U. Remark
demonstrates this, for we have the following.

(1) The subset U of I/~ considered in Remark is 7 (] 5, 1]).
(2) As in Example we have that | £, 1] belongs to O;.
(3) We have that 7 (]75,1]) does not belong to Oy,... In particular
7 (n (15.1)) = {0pu]1.1],
which is not equal to ] Z,1].

Remark 6.3.5. It is not a coincidence that we have depicted I/~ as a circle! In a

sense which we shall define and investigate in the next lecture, (I/~,Oy,..) is the ‘same’
topological space as (S, Og1). To prove this is the topic of Task |[E7.3.10)
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6.4. Further geometric examples of quotient topologies

Example 6.4.1. Let ~ be the equivalence relation on I? generated by (¢,0) ~ (t,1), for
allt e I.

(0,1) (1,1)

(0,0) (1,0)

Then I?/~ is obtained by ‘glueing the upper horizontal edge of I? to the lower horizontal
edge of I?’. We may picture it as follows.

[(0,0)] = [(0, 1)] [(1,0)] = [(1, )]
\ /

Remark 6.4.2. In the sense mentioned in Remark (I?)~, Or2/.) is the ‘same’
topological space as the cylinder (S' x I,Og1).

Example 6.4.3. Let ~ be the equivalence relation on I? generated by (s,0) ~ (s,1),
for all s € I, and by (0,t) ~ (1,t) for all ¢t € I.

(0,1) (1,1)

(0,0) (1,0)

Then I?/~ is obtained by ‘glueing together the two horizontal edges of I?’, and moreover
‘clueing together the two vertical edges of I?’. We may picture I2/~ as follows.
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We can, for instance, first glue together the horizontal edges of I? as in Example
to obtain a cylinder.

We then glue the two circles at the end of the cylinder together.

Remark 6.4.4. We can think of 12/~ as a ‘hollow doughnut’.
Terminology 6.4.5. We refer to (I?/~, Or2/..) as the torus.
Notation 6.4.6. We denote (I?/~,Op2,.) by (T?, Or=).

Example 6.4.7. Let ~ be the equivalence relation on I? generated by (0,t) ~ (1,1—¢),
forall t € I.

Then I?/~ is obtained by ‘glueing together the two horizontal edges of I? with a twist’,
so that the arrows in the figure above point in the same direction. We may picture 12/ ~
as follows.

The glued vertical edges of I? can be thought of as a line in I?/~, depicted below.
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We can also picture I?/~ as follows, from a different angle.

Terminology 6.4.8. We refer to (I%/~, Or2..) as the Mdbius band.
Notation 6.4.9. We denote (I%/~, Orz/.) by (M2,0,2).

Remark 6.4.10. If you find it difficult at first to visualise the glueing of M? from I2,
it is a very good idea to try it with a piece of ribbon or paper!

Example 6.4.11. Let ~ be the equivalence relation on I? generated by (s,0) ~ (1—s,1),
for all s € I, and by (0,t) ~ (1,¢), for all ¢t € I.

Then I?/~ is obtained by ‘glueing together the two vertical edges of I?’, and moreover
‘glueing together the two horizontal edges of I? with a twist’, so that the arrows point
in the same direction. We cannot truly picture 12/~ in R3. Nevertheless we can gain
an intuitive feeling for it, through the following picture.
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We can, for instance, first glue together the vertical edges, to obtain a cylinder.

We can then bend this cylinder so that the arrows on the circles at its ends point in the
same direction.

Next we can push the cylinder through itself.

V[

It is this step that is not possible in a true picture of I?/~. It can be thought of glueing
together two circles: a cross-section of the part of the cylinder which we have bent
upwards, and a circle on the side of the cylinder which we have not bent upwards.
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The equivalence relation ~ does not prescribe that these two circles should be glued.
We shall nevertheless proceed. The circle obtained after glueing the two circles together
is pictured below.

\/

Next we can fold back the end of the cylinder which we have pushed through. We obtain
a ‘mushroom with a hollow stalk’.

0

Finally we can glue the ends of the cylinder together, as prescribed by ~.
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Terminology 6.4.12. We refer to (I?/~,Opz2,.) as the Klein bottle.
Notation 6.4.13. We denote (I?/~,0j2,.) by (K?,Og2).

Remark 6.4.14. A rite of passage when learning about topology for the first time is to
be confronted with the following limerick. I'm sure that I remember Colin Rourke enun-
ciating it during the lecture in which I first met the Klein bottle, as an undergraduate
at the University of Warwick!

A mathematician named Klein
Thought the Mobius band was divine.
Said he: “If you glue

The edges of two,

You'll get a weird bottle like mine!”

To investigate its meaning is the topic of Task ?7.

Example 6.4.15. Let ~ be the equivalence relation on D? generated by (x,y) ~ (0,1)
for all (z,y) € S*.

We obtain D?/~ by ‘contracting the boundary of D? to the point (0,1)’. Imagine, for
instance, that the boundary circle of D? is a loop of fishing line. Suppose that we have
a reel at the point (0,1). Then D?/~ is obtained by reeling in tight all of our fishing
line. We obtain a ‘hollow ball’.
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@@

Remark 6.4.16. We could have chosen any single point on S!, instead of (0, 1), in the
definition of ~.

Terminology 6.4.17. We refer to (D?/~,Op2,..) as the 2-sphere.
Notation 6.4.18. We denote (D?/~,Op2,.) by (52, 0g:2).

Remark 6.4.19. In the sense mentioned in Remark (52,0g:2) is the ‘same’ topo-
logical space as the set
{z e R | |zf =1}

equipped with the subspace topology with respect to (R3, Ogs).
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EG6. Exercises for Lecture 6

E6.1. Exam questions

Task E6.1.1. Let X = {a,b,¢,d, e} be a set with five elements. Let Ox be the topology
on X given by

{0,{a},{e},{a,e},{c,d},{c,d, e}, {a,c,d, e}, {b,c,d, e}, X}.

Let ~ be the equivalence relation on X generated by b ~ d and ¢ ~ e. List the subsets
of X/~ which belong to Ox/...

Task E6.1.2. Let X = {a,b} be a set with two elements. Let Ox be the topology on
X given by
{0, {a}, X}

Let Y = {d,V,d,d,,e'} be a set with five elements. Let Oy be the topology on Y
given by

{®7 {a’}, {b/7 Cl}v {a,’ blv C/}, {bla Clv 6/}, {a/7 b/a Cla 6/}7 Y} :
Let ~ be the equivalence relation on Y generated by v/ ~ ¢’ and ¢ ~¢€’. Let X x X be

equipped with the product topology Oxxx, and let Y/~ be equipped with the quotient
topology Oy/.. Which of the following maps

XxX ——Y/~

are continuous?

(1) (a,a) = [d'], (a,b) =[], (b,a) = [V'], (b, ) = [d]

(2) (a,a) = [V'], (a,0) = [b], (b,a) = [d], (b;b) = [d]
(3) (a,a) = V'], (a,0) = V'], (b,a) = [d'], (b, ) = [d]
(4) (a,a) = V'], (a,b) = [d], (b,a) = [a], (b,) = [d]

(5) (a,a) = [a'], (a,b) = [d], (b, a) = [a'], (b,0) = [d]

Task E6.1.3. Let U be the subset of I? given by
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-

L ]

For which of the following choices of (1/~, Oy2,.,) does w(U) belong to Opz,.7

1) The torus.

2) The Mébius band.
)

3) The Klein bottle.

(
(
(
(4) The cylinder.

Task E6.1.4. Find a subset U of I? with the following properties.

(1) We have that 7(U) belongs to Oj2)., both when (I?/~, Oz, is the Klein bottle,
and when (1?/~, Or2/..) is the Mobius band.

(2) It is not a subset of |0, 1] x ]0,1[.

Task E6.1.5. Let ~ be the equivalence relation on S' generated by (1,0) ~ (0,1) ~
(—1,0) ~ (—=1,-1).

This task has two parts.
(1) Draw a picture of S'/~. Indicate any important aspects.
(2) Let U be the ‘open arc’ given by

{(x,y)eSl\—1§x<—%
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Does 7(U) belong to Og1,.?
Task E6.1.6. Find an equivalence relation ~ on D? with the following properties.

(1) We can picture D?/~ as a ‘hollow ball’.

(2) No three distinct elements of D? are identified by ~.

Task E6.1.7. Find a subset X of R?, and an equivalence relation ~ on X, such that
X/~ can be pictured as a ‘hollow cone’.

Let X be equipped with the subspace topology Ox with respect to (R?, Og2). Give an
example of a subset U of X/~ such that 7=!(U) is the disjoint union of a pair of subsets
Up and Uy of X which belong to Ox.

Task E6.1.8. Let X = I?U([3,4] x [0,1]). Let Ox be the subspace topology on X with

respect to (R?, Og2).

Define an equivalence relation ~ on X such that (X/~,Ox/.) can be thought of as two
tori placed side by side.

=0 =5

E6.2. For a deeper understanding

Task E6.2.1. Let (X,Ox) be a topological space. Let A be a subset of X. Let Oy
denote the subspace topology on A with respect to (X, Ox). Let
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denote the inclusion map. Let O’y denote the set
{i7'(U) | U € Ox}.
Prove that O4 = O/,

Task E6.2.2. Let (X,Ox) and (Y, Oy) be topological spaces. Let Oxyy denote the
product topology on X x Y with respect to (X, Ox) and (Y, Oy). Let

p1
XXY —X

and

D2
XXxY ——Y

denote the projection maps. Let O denote the set
{p7'(U) | U €Ox}U{p;'(U)| U ecOy}.
Prove that O is a subbasis for (X xY,Oxxy).

Remark E6.2.3. In other words, Oxy is the smallest possible topology on X x Y for
which p; and p2 are continuous.

Task E6.2.4. In the notation of Task [E6.2.2, find an example to prove that O, is
not a basis for (X x Y, Oxxy).

Task E6.2.5. Find an equivalence relation ~ on I? such that (I2/~, O /~) can truly,
unlike the Klein bottle, be pictured as follows.

Terminology E6.2.6. Let X and Y be sets. Let ~ be an equivalence relation upon X.
Let

f
X ——Y

be a continuous map. Then f respects ~ if, for all z, 2’ € X such that z ~ 2/, we have

that f(x) = f(a).
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E6.3. Exploration — torus knots

Task E6.2.7. Let (X, Ox) and (Y, Oy) be topological spaces. Let ~ be an equivalence
relation on X, and let X/~ be equipped with the quotient topology with respect to
(X, Ox) Let

S

X Y

be a continuous map such that f respects ~. Let

9

X/~ Y

be the map given by [z] — f(z), which is well defined since f respects ~. Prove that g
is continuous.

E6.3. Exploration — torus knots

Task E6.3.1. Let K denote the subset of I? pictured below.

D G @1

0,00 (3,00 (3,0

In words: begin at (0,0), and follow a line of gradient % until we hit a side of I?; Jump

over to the other side, and repeat this process. Eventually we end up at (1,1). Let

™

I? T2

be the quotient map. Can you visualise or, even better, draw 7(K)?
Remark E6.3.2. If you can draw 7(K), I would love to see it!

Remark E6.3.3. Later in the course, we shall investigate knots and links. As an
apéritif, 7(K) is a gadget known as the trefoil knot, but wrapped around a torus!

Terminology E6.3.4. A knot which can be wrapped around a torus is known as a
torus knot. Any pair of integers p and ¢ whose greatest common divisor is 1 gives rise
to a torus knot in a similar way, working with lines of gradient % in place of % above.
For any pair of integers p and ¢, one obtains a link wrapped around a torus.
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7.1. Homeomorphisms
Definition 7.1.1. Let X and Y be sets. A map
X —Y
is bijective if there is a map
Y L X

such that go f =idx and fog =idy.

Remark 7.1.2. Here idx and ¢dy denote the respective identity maps, in the terminol-

ogy of [E5.1.2
Notation 7.1.3. Let X and Y be sets, and let

f
X —Y
be a bijective map. We often denote the corresponding map
g
Yy —X

by f~1.

Remark 7.1.4. Let X and Y be sets. A map

X

Y

is bijective in the sense of Definition if and only if f is both injective and surjective.
To prove this is Task [E7.2.1

Definition 7.1.5. Let (X, Ox) and (Y, Oy) be topological spaces. A map

X f

Y

is a homeomorphism if the following hold.
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(1) We have that f is continuous,
(2) There is a continuous map

g
Y —X

such that go f =idx and fog =idy.
Remark 7.1.6. An equivalent definition of a homeomorphism is the topic of Task[E7.3.1

Definition 7.1.7. Let (X,0Ox) and (Y, Oy) be topological spaces. Then (X,Ox) is
homeomorphic to (Y, Oy) if there exists a homeomorphism

X —Y.

Remark 7.1.8. By Task |[E7.3.2) we have that (X, Ox) is homeomorphic to (Y, Oy) if

and only if there exists a homeomorphism

Y

X.

7.2. Examples of homeomorphisms between finite topological
spaces

Example 7.2.1. Let X = {a,b,c} be a set with three elements. Let
f
X—X
be the bijective map given by a — b, b +— ¢, and ¢ — a. Let Oy be the topology on X

given by
{0, {a}, {b,c}, X}
Let O1 be the topology on X given by

{0,{a,c}, {0}, X}

Let us regard the copy of X in the source of f as equipped with the topology Op, and
regard the copy of X in the target of f as equipped with the topology O;. We have the
following.

L) =0
({a cp) = {b,c}
L{bY) = {a}
) =X
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Thus f is continuous. Let

Thus g is continuous. We conclude that f is a homeomorphism. In other words, we have
that (X, Q) and (X, O;) are homeomorphic.

Example 7.2.2. Let X be as in Example Let O3 be the topology on X given by
{0.{a,b},{c}, X} .

Let f be as in Example Let us again regard the copy of X in the source of f as
equipped with the topology Oy, but let us now regard the copy of X in the target of f
as equipped with the topology Os. Then f is not continuous, since f~1 ({c}) = {b}, and
{b} does not belong to Oy. Thus f is not a homeomorphism.

Remark 7.2.3. Let
h
X—X

be the bijective map given by a — ¢, b — b, and ¢ — a. We have the following.

Thus h is continuous. Moreover we have that h is its own inverse. We conclude that b is a
homeomorphism. In other words, we have that (X, Op) and (X, Oz) are homeomorphic.

Example and Remark demonstrate that a pair of topological spaces can
be homeomorphic, even though a particular map that we consider might not be a
homeomorphism. It is very important to remember this!

Example 7.2.4. Let X be as in Example Let O3 be the topology on X given by

{0, {a}, {0}, {a,b},{b,c}, X} .
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Let f be as in Example Let us regard the copy of X in the source of f as equipped
with the topology O3, and regard the copy of X in the target of f as equipped with the
topology O1. Since Oy is a subset of Os, the calculation of Example demonstrates
that f is continuous. The inverse of f is the map g of Example We have that
g 1 ({b}) = {c}, and {c} does not belong to O1. Thus g is not continuous. We conclude
that f is not a homeomorphism.

Remark 7.2.5. Let (X,Ox) and (Y, Oy) be homeomorphic topological spaces. Then
Ox and Oy must have the same cardinality. To prove this is Task [£7.3.3, Thus (X, O3)
is not homeomorphic to (X, Oy).

Example [7.2.4] and Remark demonstrate that there can be a continuous bi-

jective map from one topological space to another, and yet these topological spaces
might not be homeomorphic. It is very important to remember this! This phenomenon
does not occur in group theory or linear algebra, for instance.

7.3. Geometric examples of homeomorphisms

Remark 7.3.1. Two geometric examples of topological spaces are, intuitively, homeo-
morphic if we can bend, stretch, compress, twist, or otherwise ‘manipulate in a continu-
ous manner’, one to obtain the other. We can sharpen or smooth edges. We cannot cut
or tear.

Remark 7.3.2. It may help you to think of geometric examples of topological spaces
as made of dough, or of clay that has not yet been fired!

Example 7.3.3. Suppose that a,b € R, and that a < b. Let the open interval ]a, b[ be
equipped with the subspace topology O, with respect to (R, OR).

Let the open interval ]0, 1] also be equipped with the subspace topology with respect to
(R, OR).

Then (]a,b[,(’)]a,b[) is homeomorphic to (]O, 1[,(9}071[). Intuitively we can stretch or
shrink, and translate, ]0, 1[ to obtain ]a,b[. To be rigorous, the map
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.10 L Jaf

given by t — a(1l — t) 4 bt is a homeomorphism.

For the following hold.

(1) By Task [E5.3.14] we have that f is continuous.
(2) Let

Ja, b —2—10,1[

be the map given by ¢ — i:—z. By Task [E5.3.14] we have that g is continuous.

Moreover we have the following, for every t € |0, 1].

g(f@)) = g (a(l =)+ bt)
a(l—t)+bt—a

b—a
_t(b—a)
- b—ua

=t.

Thus we have that g o f = id) ;. We also have the following, for every t € ]a, b|.
t—a
(5=2)
t—a t—a
- ( =) =)

a(b—a)-— (t a)+b(t—a)
b—

f(g(t)

t(b—a)
b—a
=t.

Thus we have that fog = id) .
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Example 7.3.4. Suppose that a,b € R, and that a < b. Suppose also that a/,b' € R,
and that @’ < V/. Let |a, b[ be equipped with the subspace topology Ojap| with respect
to (R, OR)

Let ]a’, b'[ be equipped with the subspace topology Oy, 1 with respect to (R, Og).
la’,b'[

\ I
a’ v

By Example and Remark [E7.1.11] we have that (]a,b[,(’)}&b[) is homeomorphic
la’,b'[

to (]a’ [, 0 . In other words, we use the homeomorphism of Example to
construct a homeomorphism from (Ja, b[, Ojq ) to (Ja',0'[, Opqr () in two steps.

Remark 7.3.5. The technique of Example and Example is a good one to
keep in mind when trying to prove that a pair of topological spaces are homeomorphic.

(1) Look for an intermediate special case, which in this case is where one of the
topological spaces is (]O, 1, (’)]0’1[), for which we can explicitly write down a home-
omorphism without too much difficulty.

(2) Apply a ‘machine’, which in this case is the fact that we can compose and invert
homeomorphisms, to achieve our original goal.

Example 7.3.6. Suppose that a,b € R, and that a < b. Suppose also that a/,b’ € R,
and that o’ < b'. Let [a,b] be equipped with the subspace topology Oj, with respect
to (R, OR)
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7.3. Geometric examples of homeomorphisms

Let [a’, 0] be equipped with the subspace topology O[,s 4 with respect to (R, Og).

I I
a’ v

Then ([a, b] ,O[a’b]) is homeomorphic to ([a’, b'] ,(’)[a/’b/]). Intuitively, we can stretch or
shrink, and translate, [a,b] to obtain [a,b]. To be rigorous, we can argue in exactly the
same way as in Example and Example with the unit interval (I, Oy) as the
intermediate special case.

Remark 7.3.7. The assumption that a < b and o’ < ¥’ is crucial in Example Let
a € R. Let {a} = [a,a] be equipped with the subspace topology O, with respect to
(R, OR).

Suppose that a’/,0’ € R, and that o’ < V'.

We have the following.

(1) A homeomorphism is in particular a bijection, as observed in Task [E7.3.1

(2) There is no bijective map
{a} —— [, 0].

To check that you understand this is Task [E7.2.2]

We conclude that ({a}, Oy4}) is not homeomorphic to ([a/,b'], Oy ;). Can you see
where the argument of Example breaks down? This is Task

Remark 7.3.8. In a nutshell, we can shrink a closed interval to a closed interval which
has as small a strictly positive length as we wish, but not to a point.

121



7. Monday 27th January

Example 7.3.9. Let the open interval |—1, 1] be equipped with the subspace topology
O)_1,1[ with respect to (R, Og).

-1 1

Then (]—1, 1], (’)}_1,1[) is homeomorphic to (R, Ogr). Intuitively, think a cylindrical piece
of dough. The dough can be worked in such a way that the cylinder becomes a longer
and longer piece of spaghetti. We can think of open intervals in topology in a similar
way!

With dough, our piece of spaghetti would eventually snap, but the mathematical
dough of which an open interval is made can be stretched as much as we like, to the
end of time! If we ‘wait long enough’, our mathematical piece of spaghetti will be longer
than the distance between any pair of real numbers! A way to visualise this is depicted
below.

To be rigorous, the map

S

|-1,1] R

given by t — 1%“‘ is a homeomorphism. For the following hold.

(1) We have that f is continuous. To prove this is the topic of Task [E7.2.4
(2) Let

9
R

]_171[

be the map given by t — ﬁ‘t' We have that ¢ is continuous. To prove this is
the topic of Task Moreover we have that ¢ (f(t)) =t for all t € |—1, 1], so
that g o f = idj_; ;. In addition we have that f (g(t)) = t for all ¢ € R, so that
fog=idg. To prove the last two statements is the topic of Task [E7.2.6]
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7.3. Geometric examples of homeomorphisms

Example 7.3.10. Suppose that a and b belong to R, and that a < b. Let O}, ;[ denote
the subspace topology on |a, b[ with respect to (R, Og).

@ —_——
ST

By Example Example @l and Remark we have that (Ja,b[, Oqp[) is
homeomorphic to (R, Or). Following the technique described in Remark we use the
homeomorphisms of Example and Example to construct a homeomorphism
from (Ja, b[, Opap) to (R, Or) in two steps.

) &
AN

Example 7.3.11. Let ag, bo, (), b, € R be such that ay < by and af, < b,. Let Xy be
the ‘open rectangle’ given by ]ag, bo[ x ]ay, b [, equipped with the subspace topology Ox,
with respect to (R?, Op2).

by

ao bo

Let aq,b1,a],b] € R be such that a; < by and o} < ). Let X; be the ‘open rectangle’
given by |ai, b1 x ]a),b}[, equipped with the subspace topology Ox, with respect to
(R, Ops2).
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!
ay

a1 by

By Example|7.3.4} we have that (Jao, bo[, Ojq,,5,[) is homeomorphic to (Ja1,b1[, O, p1(),
and that <]a6, ol (9]% %[) is homeomorphic to (]a’l, b’l[,O] [) By Task [E7.1.14] we
deduce that (Xo, Ox,) is homeomorphic to (X1, Ox, ).

Example 7.3.12. Let ag, by, af, b, € R be such that ay < by and af < bf. Let X be the

‘closed rectangle’ given by [ag, bo] X [af, bp], equipped with the subspace topology Ox,
with respect to (R?, Ope).

! /
al,b}

by

Qo bo
Let ay,by,a,b) € R be such that a1 < by and a} < b|. Let X; be the ‘closed rectangle’

given by [a1,b1] X [a},b]], equipped with the subspace topology Ox, with respect to
(R%, Op2).

ai bl

By Example|7.3.6, we have that ([ao, bo] , Ofq,,,]) is homeomorphic to ([a1,b1], Ojq, 411,
[). By Task [E7.1.14, we

and that <[a6, 0] ’O[ag,b()]) is homeomorphic to ([a’l, 4 ,(9]
deduce that (Xo, Ox,) is homeomorphic to (X1, Ox, ).

! /
al,b}
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7.3. Geometric examples of homeomorphisms

Remark 7.3.13. As in Remark[7.3.7 it is crucial in Example[7.3.12]that the inequalities
are strict. For instance, let a,a(,b, € R be such that af; < bj. Let X be the line
{a} x [a}, by], equipped with the subspace topology Ox, with respect to (R?, Opz).

(a,bp)

(@, ap)

Let aq, b1, a), b} € R be such that a; < b; and @} < b}. Let X; be the ‘closed rectangle’
given by [a1,b1] X [a},b}], equipped with the subspace topology Ox, with respect to
(R27 ORQ)'

ay b1

Then (Xo,Ox,) is not homeomorphic to (X1,Ox,). We cannot prove this yet, but we
shall be able to soon, after we have studied connectedness.

Example 7.3.14. Let X be the square depicted below, consisting of just the four lines,
with no ‘inside’.

(_2v 2) (2’ 2)

(—2,-2) (2,-2)

In other words, X is given by

({=2,2} x [-2,2)) U([-2,2] x {-2,2}).
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7. Monday 27th January

Let Ox denote the subspace topology on X with respect to (R?, Og2). Then (X, Oy) is
homeomorphic to the circle (S, Og1).

A way to construct a homeomorphism
f
Sl —— X

is to send each x € S' to the unique y € X such that y = kx, where k¥ € R has the
property that & > 0. To rigorously write down the details is the topic of Task [E7.2.7]

'\C) /
/ ! \
Remark 7.3.15. Think of a circular piece of string on a table. Even without stretching
it, you could manipulate it so that it becomes a square!

Example 7.3.16. A similar argument to that of Example demonstrates that the

unit disc (D2, Ops2)

is homeomorphic to the unit square (12, 0;2)

To prove this is the topic of Task
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7.3. Geometric examples of homeomorphisms

Example 7.3.17. Let Y denote the union of the set
{(x,y)€R2 | -1 <2 <0 and |y =1+:c}

and the set
{(@,y) eR*|0<z<land|y=1-z}.

Let Oy denote the subspace topology on Y with respect to (R?, Og2).

Then (Y, Oy) is homeomorphic to the circle (S, Og1).

A way to construct a homeomorphism
f
Yy —— ¢t

is to send each (x,70) € Y to the unique (z,y;) € S! such that y; = kyo, where k € R

has the property that £ > 0. To rigorously write down the details is the topic of Task
??

Remark 7.3.18. By Remark [E7.1.11 we have that the topological space (X, Ox) of

Example [7.3.14] is homeomorphic to the topological space (Y,Oy) of Example [7.3.17
since both are homeomorphic to (S!,Og1). To prove this in a different way is the topic

of Task [(.3.17
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7. Monday 27th January

Example 7.3.19. Let X be a ‘blob’ in R?, equipped with the subspace topology Ox
with respect to (R?, Op2).

Then (X, Ox) is homeomorphic to the unit square (12, O2). If X were made of dough,
it would be possible to knead it to obtain a square! To rigorously prove that (X, Ox) is
homeomorphic to (12, O;2) is the topic of Task ?7?.

Remark 7.3.20. In Task ??, we shall not explicitly describe a subset of R? such as
the ‘blob’ above. We shall work a little more abstractly, with subsets of R? which can
be ‘cut into star shaped pieces’. Here ‘star shaped’ has a technical meaning, discussed
before Task ?7.
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E7. Exercises for Lecture 7

E7.1. Exam questions

Task E7.1.1. Let X = {a, b, c,d} be a set with four elements. Let Ox be the topology
on X given by

{0,{a},{c}, {d},{a,b},{a,c}, {a,d}, {c,d},{a,b,c}, {a,b,d}, {a,c,d}, X}.

Let Y ={1,2,3,4} be a set with four elements. Let Oz be the topology on Z given by

{042}, {3}.{2,3},{1,3,4}, Z} .
Let

¥ S

Y

be the map given by a +— 3, b+— 1, ¢ — 2, and d — 4. Is f a homeomorphism?

Task E7.1.2. Let X = {a,b,c} be a set with three elements. Let Ox be the topology
on X given by

{0, {a}, {b,c}, X}.
Let Y = {d’,b'} be a set with two elements. Let Oy be the topology on Y given by
{@, {a'}, Y} .
Let Z ={1,2,...,6} be a set with six elements. Let Oz be the topology on Z given by
{0,{2},{2,5},{1,4},{1,3,4,6},{1,2,4},{1,2,4,5},{1,2,3,4,6}, 7} .
Let X X Y be equipped with the product topology Ox«y. Find a homeomorphism

X xY /

Z.

Task E7.1.3. Let [0,2[ be equipped with the subspace topology O o with respect to
(R, OR).
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E7. Exercises for Lecture 7

Let ]3,4] be equipped with the subspace topology Oj3 4) with respect to (R, Og).

Prove that ([0, 2[, 0[072[) is homeomorphic to (]3, 4] ,(’)]3’4]).

Task E7.1.4. Suppose that a and b belong to R, and that a < b. Suppose that a’, b’ € R,
and that a’ < ¥'. Let O, [ be the subspace topology on [a, b[ with respect to (R, Og).

Let Oy [ be the subspace topology on ]a', V'] with respect to (R, Og).

I I
a’ b

Generalise your argument from Task [E7.1.3|to prove that ([a, b, O[a,b[) is homeomorphic
to (]a’, b,] s O}al,b]) .

Task E7.1.5. Suppose that a belongs to R. Let O}, o denote the subspace topology
on |a, oo[ with respect to (R, Og).

Prove that (]Ja,00[, Oy o) is homeomorphic to (R, Og). You may wish to proceed as
follows.

(1) Let
10, 1] —— Ja, o0

be the map given by z + a + $Z.. Demonstrate that f is a homeomorphism. You

may wish to appeal to Task [£5.3.15
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E7.1. Exam questions

(2) By Task [E7.3.2 deduce that there is a homeomorphism

la, co] — 10, 1].

By Example there is a homeomorphism

10, 1] R.

By Task conclude that there is a homeomorphism

la, o[ R.

Task E7.1.6. Suppose that b belongs to R. Let O)_ | denote the subspace topology
on |—o0, b[ with respect to (R, Og).

Prove that (]—o00,b[, O]_ p|) is homeomorphic to (R, Og).
Task E7.1.7. Let k € R, and let ¢ € R. Let L . be the set given by
{(:L‘,y) c R? | y:kx—l—c}.

Let O, denote the subspace topology on Ly . with respect to (R2, Og2).

Prove that (Ly, O, ) is homeomorphic to (R, Og).

Task E7.1.8. Let k£ € R, and let ¢ € R. Let a,b € R be such that a < b. Let Lgféb} be
the set given by
{(z,y) eR* |y =ka+cand a <z <b}.

Let O, ;) denote the subspace topology on LLa;:b] with respect to (R?, Op2).

[a,b
Lk,c
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Prove that (LLa;b], OL[a,b]) is homeomorphic to (I,Or). You may quote without proof
? k,c

anything from the lectures, and any of the other tasks.

Task E7.1.9. Find an intuitive argument to demonstrate that the cylinder (S! x
I,05141)

is homeomorphic to an annulus (A, 04, ), where 0 < k < 1.

Can you find a way to give a rigorous proof, along the lines of your intuitive argument?

Task E7.1.10. Let (X,0x), (Y,0Oy), and (Z,Oz) be topological spaces. Let

x—ty
and
y -
be homeomorphisms. Prove that
fiofo

is a homeomorphism.
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E7.1. Exam questions

Remark E7.1.11. Together with Task |[E7.3.2] it follows that if any two of (X, Ox),
(Y,Oy), and (Z,0z) are homeomorphic, then each is homeomorphic to the other two.

Remark E7.1.12. In other words, the relation on the set of topological spaces given
by (Xo, Ox,) ~ (X1, 0x,) if (Xo, Ox,) is homeomorphic to (X1, Ox,) is an equivalence
relation.

Remark E7.1.13. If it worries you, we do have to be careful about how we make sense
of something as large as the set of topological spaces. This is a foundational matter
which can be addressed in many different ways, and which we can harmlessly ignore!

Task E7.1.14. Let (Xo,Ox,), (X1,0x,), (Yo, Oy,), and (Y71, Oy, ) be topological spaces.
Let

and

be homeomorphisms. Prove that the map

Jox f1

X0><X1 YbXYl

given by (xo,x1) — (fo(xo), f1(z1)) is a homeomorphism.
Definition E7.1.15. Let (X,Ox) and (Y, Oy) be topological spaces. A map

f
X ——Y

is open if, for every subset U of X which belongs to Ox, we have that f(U) belongs to
Oy.
Task E7.1.16. Let (X,Ox) and (Y, Oy) be topological spaces. Let

X S

Y

be a homeomorphism. Prove that f is open.
Definition E7.1.17. Let (X,Ox) and (Y, Oy) be topological spaces. A map

¥ S

Y

is closed if, for every subset V of X which is closed with respect to Ox, we have that
f(V) is closed with respect to Oy.
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Task E7.1.18. Let (X,Ox) and (Y, Oy) be topological spaces. Let

be a homeomorphism. Prove

is closed.
Task E7.1.19. Let (X,Ox) and (Y, Oy) be topological spaces. Suppose that

f
X——Y

is a homeomorphism. Let A be a subset of X. Let A be equipped with the subspace
topology O4 with respect to (X, Ox). Let f(A) be equipped with the subspace topology
O(a) with respect to (Y, Oy). Prove that (A4, 04) is homeomorphic to (f(A), Oy(a)).

Task E7.1.20. Let (X,Ox) and (Y, Oy) be topological spaces. Suppose that

f
X ——Y

is a homeomorphism. Let A be a subset of X. Let X \ A be equipped with the subspace
topology Ox\ 4 with respect to (X,Ox). Let Y\ f(A) be equipped with the subspace

topology with respect to (Y,Oy). Deduce from Task that (X \ 4, OX\A) is
homeomorphic to (Y \ f(4), Oy\f(A)).
E7.2. In the lecture notes

Task E7.2.1. Let X and Y be sets. Prove that a map

¥ S

Y

is bijective in the sense of Definition if and only if it is both injective and surjective.

Task E7.2.2. Let X = {2z} be a set with one element. Let Y be a set with at least two
elements. Why can there not be a bijective map between X and Y? This was appealed

to in Task [.3.7.

Task E7.2.3. In the notation of Example where does the analogue of the argument
of Example for closed intervals break down if we assume that a = b7
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E7.2. In the lecture notes

Task E7.2.4. Prove that the map

L1 — R
given by t — 1%“‘ is continuous. You may wish to proceed as follows.
(1) Prove that the map
-1,1] . R

given by ¢t — 1 — |t| is continuous. For this, you may wish to express g; as a
composition of maps, allowing you to deduce continuity from Task |E25.3.3and from
Task [E5.3.14

(2) Taking go to be the inclusion map

]_171[

R

and g1 to be the map of (1), deduce the continuity of f from Proposition m (1),
and Task [E5.3.101

Task E7.2.5. Prove that the map

R—1—1]-1,1]
given by t — ﬁlt\ is continuous. You may wish to proceed in a similar way as in Task
Task E7.2.6. Let

L1 — R
be the map of Task Let

R—L1]-1,1]

be the map of Task [E7.2.50 Prove that for all ¢t € |—1, 1] we have that g (f(¢)) = t, and
that for all t € R we have that f (g(t)) = t.

Task E7.2.7. Let X be the square of Example given by

({—2,2} x [-2,2]) U([-2,2] x {—2,2}).
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<*2772) (23 72)

Let Ox denote the subspace topology on X with respect to (R?, Og2). Construct a
homeomorphism

51*f>X

in the manner indicated in Example [7.3.14

You may wish to proceed as follows.

(1) Let Aeast be the subset of S given by

V)

{(:L’,y)651|x>0and—i§y§ 1.}.

Let Aeast be equipped with the subspace topology with respect to (S*, Og1). Let
Beast be the subset of X given by

{(2,y) eR?*| —2<y<2}.
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E7.2. In the lecture notes

Let Beast be equipped with the subspace topology with respect to (X, Ox). Prove
that the map

feast

Aeast Beast

given by (z,y) — (2, QI—y) is continuous. Quote any tasks which you appeal to.

(2) Prove that the map

geast

Beast

Aeast

given by (z,y) — ”(le)u(x,y) is continuous. In particular, quote any tasks which

you appeal to.

(3) Verify that geast © feast = 1d ..., and that feast © geast = idp,..,. Conclude that feast
is a homeomorphism.

(4) Let Ayest be the subset of S! given by

)
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Let Awest be equipped with the subspace topology with respect to (S, Og1). Let
Byest be the subset of X given by

{(-2,y) eR*| —2<y <2}

Let Byest be equipped with the subspace topology with respect to (X, Ox). As in
(1) = (3), prove that the map

f west
Awest

B west

given by (z,y) (—2, %) is a homeomorphism. Quote any tasks which you appeal

to.

5) Let Aporth be the subset of S given b
g Y

{(w,y)esl\y>0and—i§x§i}.

VRN

Let Anorth be equipped with the subspace topology with respect to (S!,Og1). Let
Bhiorth be the subset of X given by

{(z,2) eR? | -2 <z < 2}.
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Let Bhorth be equipped with the subspace topology with respect to (X, Ox). Along
the lines of (1) — (3), prove that the map

fnorth

Anorth Bnorth

given by (z,y) — (%x, 2> is a homeomorphism. Quote any tasks which you appeal
to.

VRN

6) Let Acouth be the subset of St given b
g Yy

{($,y)651\y<0and—i§x§i}.

[\

~_

Let Anoth be equipped with the subspace topology with respect to (S!,0g1). Let
Bhorth be the subset of X given by

{(z,2) eR? | -2 <z < 2}.

Let Bsouth be equipped with the subspace topology with respect to (X, Ox). Along
the lines of (1) — (3), prove that the map

fsouth

Asouth Bsouth

given by (z,y) — (%‘T, — ) is a homeomorphism. Quote any tasks which you appeal

to.
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(7) Appeal to Task [E7.3.6| three times to build a homeomorphism
Sl —— X

from the homeomorphisms feast, fsouth, fwest, and frorth-

Task E7.2.8. Let X be the subset [—2,2] x [~2,2] of R?, equipped with the subspace
topology Ox with respect to (R?, Op2).

(_27 2)

(_27 _2)

Construct a homeomorphism

D2L’X

You may wish to proceed by adapting your argument from Task in the following
manner.

(1) Let Aeast be the subset of D? given by

{(m,y)€D2]m>0and— <

3

Si-

1
7§§y

Let Aeast be equipped with the subspace topology with respect to (D2, Ops2). Let
Beast be the subset of X given by

=

{(x,y)€X|x>Oand—\/L§§y§
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E7.2. In the lecture notes

Let Beast be equipped with the subspace topology with respect to (X, Ox). Prove
that the map

f east
Aea st

Beast

given by (z,y) — <H(w2y)|| , 2%’) is a homeomorphism. Quote any tasks which you

appeal to.

(2) Modify (4) — (6) of Task [E7.2.7|in a similar way.

(3) Let D*\{0} be equipped with the subspace topology Op2\ {0} With respect to (D%, Op2).
Let X \ {0} be equipped with the subspace topology Ox\ (o} with respect to (X, Ox).
Appeal to Task three times to build a homeomorphism

D2 {0} —— x\ o)

from the homeomorphisms feast, fsouths fwest, and fnorth Of (1) and (2).
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k
N

(4) By Task [E7.3.9, deduce that the homeomorphism f of (3) gives rise to a homeomor-
phism

D? — X.

Task E7.2.9. Prove that (D? Op2) is homeomorphic to (12, 0;2). You may wish to
appeal to Task [E7.2.8] Example [7.3.12] and Task [E7.1.10
E7.3. For a deeper understanding

Task E7.3.1. Let (X,Ox) and (Y, Oy) be topological spaces. Prove that a map

¥ f

Y

is a homeomorphism if and only if f is bijective, continuous, and open.

Task E7.3.2. Let (X,Ox) and (Y, Oy) be topological spaces. Let
f
X —Y

be a homeomorphism. By definition of a homeomorphism, there is a continuous map

g
Y —X

such that go f = idx and f o g = idy. Prove that g is a homeomorphism.

Task E7.3.3. Let (X,0x) and (Y,Oy) be homeomorphic topological spaces. Prove
that there is a bijection between Ox and Oy.

Remark E7.3.4. In particular, if X and Y are finite sets such that Ox has a different
cardinality to Oy, then (X, Ox) cannot be homeomorphic to (Y, Oy).

Task E7.3.5. Let (X,Ox) and (Y, Oy) be topological spaces. Let {4;},.; be a set of
subsets of X such that X = UjeJ Aj. For every j € J, let A; be equipped with the
subspace topology with respect to (X, Ox). Suppose that the following hold.
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E7.3. For a deeper understanding
(1) For all jo and j; which belong to J, the restriction of fj, to Aj, N Aj, is equal to
the restriction of f; to A; N Aj,.
(2) We have that A; belongs to Ox for every j which belongs to J.

(3) For every j which belongs to J, we have a continuous map

4, fi

such that the map

!

fj
ey f(45)

given by « — f;(x) is a homeomorphism, where f(A;) is equipped with the subspace
topology with respect to (Y, Oy).

(4) Let

f
X——Y

denote the map of Notation [E5.3.22| corresponding to the maps {f; }j cj Suppose
that f is bijective.

Prove that f is a homeomorphism. You may wish to proceed as follows.

(1) By (1) of Task [E5.3.23] observe that f is continuous.

(2) Suppose that j belongs to J. Since f]’- is a homeomorphism, there is a continuous

map

such that g} o f; = ida; and f} o g; = ids(4;). Let

f(4)) —— X
. p : .
be the map given by y +— gj(y). By Task [E5.1.10}, observe that g; is continuous.
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(3) Suppose that jo and j; belong to J. We have that
Fio(Ajo) 0 f5: (Azy) = f(Ajp) N f(Ag)-
Since f is bijective, we have that
F(Azo) 0 f(Ajy) = f(Ajo N Ajy).
By definition of f, we have that
F(Ajo N Ajy) = fio(Ajo N Ajy)

and that
f(Ajs N A;) = fi(Aj, N Aj).

Thus we have that

Fio(Ajo) 0 f5:(Ajy) = Fio(Ajo N Ajy)
and that

Fio(Ajo) O f5: (Ajy) = Fiu (Ajy N A, ).
Deduce that the restriction of gj;, to fj,(A4j,) N fj1(Aj,) is equal to the restriction
of gjo to fjo(Ajo) N f51(Ajy). Let

g
Y —X
be the map of Notation [£5.3.22| corresponding to the maps {gj}jeJ‘
(4) By Task [E7.1.16} observe that f;(A;) belongs to Oy.
(5) By (1) of Task [E5.3.23] deduce from (2) and (4) that g is continuous.

(6) Observe that go f =idx, and that f o g = idy.

Task E7.3.6. Let (X,0x), (Y,0y), {Aj}j€J7 {fj}jes, and f be as in Task |E_7._?!>1._57
except that instead of assuming that A; belongs to Ox for every j € J, suppose that
{A;}jecs is locally finite with respect to Oy, and that A; is closed with respect to Ox
for every j € J. Suppose that {f (Aj)}j ¢ 18 locally finite with respect to Oy. Prove
that f is a homeomorphism. You may wish to proceed as follows.

(1) By (2) of Task [E5.3.23] observe that f is continuous.
(2) Define

f(45)

as in (2) of Task [E7.3.5] By Task [E5.1.10| observe that g; is continuous.
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E7.3. For a deeper understanding
(3) As in (3) of Task [E7.3.5 demonstrate that the restriction of gj, to fj,(A4j,) N
fi (4;,) is equal to the restriction of gj, to fj,(A4j,) N fj, (A4;,). Let

g
Y —X

be the map of Notation [E5.3.22| corresponding to the maps {gj}jeJ'
(4) By Task [E7.1.18] observe that f;(A;) is closed in Y with respect to Oy-.

(5) By (2) of Task|E5.3.23] deduce from (2), (4), and our assumption that {f(A4;)}
is locally finite with respect to Oy, that g is continuous.

jeJ

(6) Asin (6) of Task [E7.3.5] observe that g o f = idx, and that fog = idy.

Task E7.3.7. Let Oj ;[ be the subspace topology on [0, 1] with respect to (R, Og).

Let

[O> 1[ L’ St

be the map given by ¢ +— ¢(t), where

R

is the map of Task

Prove that f is a continuous bijection. Find a set {A;},_; of subsets of [0, 1] with the
following properties.

(1) We have that {Aj}jej is locally finite with respect to O 1.

(2) For every j which belongs to J, we have that A; is closed in [0, 1[ with respect to
0[071[.
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(3) Suppose that j belongs to J. Let A; be equipped with the subspace topology with
respect to ([0, 1[,(9[071[). Let f(A;) be equipped with the subspace topology with
respect to (Sl, (’)51). Then the map

i

Aj f(45)

given by ¢t — f(t) is a homeomorphism.

(4) We have that {f(A;)},c; is not locally finite.

Remark E7.3.8. In Task([E11.3.2] you are asked to prove that f is not homeomorphism.

Task E7.3.9. Let (X,Ox) and (Y, Oy) be topological spaces. Suppose that z belongs
to X, and that {z} is closed in X with respect to Ox. Let X \ {z} be equipped with
the subspace topology Ox\ (3 With respect to (X, Ox). Let

¥ S

Y

be a bijective map. Let Y\ f(z) be equipped with the subspace topology Oy ff(z)} with
respect to (Y, Oy). Suppose that the map

X\ {z} —L— v\ {f(2)}

given by 2/ — f(2') is a homeomorphism. Prove that f is a homeomorphism. You may

wish to appeal to Task [E5.3.29

Task E7.3.10. As in Example let ~ be the equivalence relation on I generated
by 0 ~ 1.

Prove that (I/~,0y,.) is homeomorphic to (S*, Og1).

You may wish to proceed as follows.
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E7.3. For a deeper understanding

(1) Let
/
I—— gt

be the map given by ¢ — ¢(¢), where

R

Sl

is the map of Notation [E5.3.26] By Task [£5.3.27| and Task [E5.2.3| observe that ¢’

is continuous.

(2) Observe that ¢/(0) = ¢'(1). By Task [E6.2.7, deduce that the map
I/N _— Sl

given by [t] — ¢/(t) is continuous.
(3) Let Ag be the set given by
{(z,y) € Sz >0} .

Let Ag be equipped with the subspace topology with respect to (S*, Og1). Appealing

to Task [E2.3.1] Proposition [5.4.3] Task [E5.3.14] and Proposition [5.3.1] observe that

the map

AO I

given by (z,y) — —% + i is continuous.

(4) Let

IL)I/N
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denote the quotient map. By Remark and Proposition deduce from (3)
that the map

Ao =2 1/

given by (z,y) — [-¥ + 1] is continuous.
(5) Let A; be the set given by
{(z,y) € S' |z <0}.

Let A; be equipped with the subspace topology with respect to (S*, Og1). Appealing
to Task Proposition and Task observe that the map

A —— 1T

given by (z,y) — § + % is continuous.
(6) By Remark and Proposition deduce from (5) that the map

g1

A= e
given by (z,y) — [4 + 3] is continuous.
(7) Let
Sl i, I/N

denote the map given by

(z,y) — go(z,y) 1if (x,y) belongs to Ay,
7 g1(z,y) if (z,y) belongs to Aj.

By (2) of Task [E5.3.23] deduce from (4) and (6) that ¢ is continuous.
(8) Observe that go f =id;;., and that f og = idg.

(9) Conclude by (2), (7), and (8) that f is a homeomorphism.
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E7.4. Exploration — torus knots

Task E7.4.1. Let K be the subset of T2 of Task [£6.3.1]

0,00 (3,00 (3,0

Let m(K) be equipped with the subspace topology Oy k) with respect to (T2, Op2).
Prove that (m(K), Oy k)) is homeomorphic to (S*, Og1).
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8.1. Further geometric examples of homeomorphisms

Example 8.1.1. Let K be a subset of R? such as the following.

D

Let O denote the subspace topology on K with respect to (R?, Ogs). Then (K, Ok) is
an example of a knot. We have that (K, Ok) is homeomorphic to (S, O%).

Remark 8.1.2. The crucial point is that both K and a circle can be obtained from a
piece of string by glueing together the ends together. We may bend, twist, and stretch
the string as much as we wish before we glue the ends together.

Remark 8.1.3. We shall explore knot theory later in the course.

Example 8.1.4. We have that (72, Oz2) is homeomorphic to (S x S, Og1, g1).

To prove this is the topic of Task [E8.2.1

Remark 8.1.5. We can think of the left copy of S' in S' x S! as the circle depicted
below.

Suppose that x belongs to S*.
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We can think of {z} x S! as a circle around z.

In this way, we can think S' x S' = J,cqi1{z} x S! as a ‘circle of circles’.

A ‘circle of circles’ is intuitively exactly a torus.

8.2. Neighbourhoods

Definition 8.2.1. Let (X,Ox) be a topological space. Suppose that x belongs to X.
A neighbourhood of x in X with respect to Ox is a subset U of X such that x belongs
to U, and such that U belongs to Ox.

In other references, you may see a neighbourhood U of = defined simply to be a
subset of X to which x belongs, without the requirement that U belongs to Ox.

Example 8.2.2. Let X = {a,b,c,d} be a set with four elements. Let Ox be the
topology on X given by

{0,{a},{b},{d},{a,b},{a,d},{b,d},{c,d},{a,b,d}, {a,c,d},{b,c,d}, X}.

Here is a list of the neighbourhoods in X with respect to Ox of the elements of X.

Element Neighbourhoods

{a}v {a7 b}v {a7d}v {aa b, d}: {a,c, d}; X

{b}, {a,b}, {b,d}, {a,b,d}, {b,c,d}, X

{¢,d}, {a,c,d}, {b,c,d}, X

{d}, {a,d}, {b,d}, {c,d}, {a,b,d}, {a,c,d}, {b,c,d}, X

Qo o
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Example 8.2.3. Suppose that x belongs to D?. For instance, we can take z to be

(1:1)-

A typical example of a neighbourhood of 2 in D? with respect to Op2 is a subset U of
D? which is an ‘open rectangle’, and to which x belongs. When z is (i, %), we can, for

instance, take U to be ]O, %[ X }O, % [

We could also take the intersection U with D? of any open rectangle in R? to which z
belongs. By definition of Op2, we have that U belongs to Op2. For instance, when z is

(3,1), we can take U to be the intersection with D? of ]0,1[ x ]0, 1.

A disjoint union Uy U Uy of a pair of subsets of D? which both belong to Op2, with the
property that z belongs to either Uy or Uy, is also a neighbourhood of x in D? with
respect to Op2. For UyUU; belongs to Op2, and x belongs to Uy UU;. When x is (i, %),
we can for instance take Uy to be ]0, % [ X ]0, % [, and take U; to be the intersection with

D? of |-1,—3[ x |-1,-1].
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A subset of D? to which  does not belong is not a neighbourhood of z in D? with
respect to Ope, even if it belongs to Op2. When z is (i, %), the subset ]—%, 0[>< ] —%,O[
is not a neighbourhood of z, for instance.

A subset of D? to which x belongs, but which does not belong to Op2, is not a neigh-
bourhood of = in D? with respect to Op2. When z is (i, i), the subset ]0, %[ X [0, %]
is not a neighbourhood of z, for instance.

8.3. Limit points

Definition 8.3.1. Let (X, Ox) be a topological space. Let A be a subset of X. Suppose
that = belongs to X. Then x is a limit point of A in X with respect to Ox if, for every
neighbourhood U of x in X with respect to Ox, there is an a € U such that a belongs
to A.

Remark 8.3.2. In other words, z is a limit point of A in X with respect to Ox if and
only if for every neighbourhood U of z in X with respect to Ox, we have that ANU # 0.

Remark 8.3.3. Let (X, Ox) be a topological space. Let A be a subset of X. Suppose
that a belongs to A. Then a is a limit point of A in X with respect to Ox, since every
neighbourhood of a in X with respect to Ox contains a.
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8.4. Examples of limit points

Example 8.4.1. Let X = {a,b} be a set with two elements. Let Ox be the topology
on X given by

{0, {b}, X}

Let A = {b}. By Remark we have that b is a limit point of A in X with respect
to Ox. Moreover, a is a limit point of A in X with respect to Ox. For the only
neighbourhood of a in X with respect to Ox is X, and we have that b belongs to X.

Example 8.4.2. Let X = {a,b,c,d,e} be a set with five elements. Let Ox be the
topology on X given by

{0,{a},{b},{a,b},{b,e},{c,d},{a,b,e},{a,c,d},{b,c,d},{a,b,c,d},{b,c,d, e}, X}.

Let A = {d}. By Remark we have that d is a limit point of A in X with respect
to Ox. To decide whether the other elements of X are limit points, we look at their
neighbourhoods.

Element Neighbourhoods

{a}, {a,b}, {a,b,e}, {a,c,d}, {a,b,c,d}, X

{b}, {a,b}, {b,e}, {a,b,e}, {b,c,d}, {a,b,c,d}, {b,c,d, e}, X
{¢,d}, {a,c,d}, {b,c,d}, {a,b,c,d}, {b,c,d,e}, X

{b,e}, {a,b,e}, {b,c,d,e}, X

o O SR

For each element, we check whether d belongs to all of its neighbourhoods.

Element Limit Point Neighbourhoods to which d does not belong

X {a}, {a,b}, {a,b, e}
{b}, {a,b}, {b,e}, {a,b, e}

{b,e}, {a,b, e}

o O O Q

X
v
X

To establish that a, b, and e are not limit points, it suffices to observe that any one of
the neighbourhoods listed in the table above does not contain d.

Example 8.4.3. Let (X, Ox) be as in Example [8.4.2] Let A = {b,d}. For each of the
elements a, ¢, and e, we check whether every neighbourhood contains either b or d. The
neighbourhoods are listed in a table in Example

Element Limit Point Neighbourhoods U such that ANU = ()

a X {a}
c v
e v
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Example 8.4.4. Let (X,Ox) be (R,Or). Let A= [0, 1].

Let U be a neighbourhood of 1 in R with respect to Or. By definition of Og, there is
an open interval |a, b such that a < 1 < b and which is a subset of U.

I —

\ \ Lo
0 a 1 b

There is an « € R such that a < 2 < 1, and 0 < z. In particular, x belongs to [0, 1].

I —

I
0 a x 1 b

Since ]a, 1[ is a subset of ]a,b[, and since |a,b] is a subset of U, we also have that z

belongs to U. This proves that if U is a neighbourhood of 1 in R with respect to Og,

then [0,1[NU is not empty. Thus 1 is a limit point of [0, 1] in R with respect to Og.
Suppose now that x € R has the property that = > 1.

Let € € R be such that 0 < ¢ < x — 1. Then |z — ¢,z + €[ is a neighbourhood of z in R
with respect to Og, but [0, 1[N ]z — €,z + €] is empty.

[ [ \ [ \
0 1 r—e x x+e€

Thus z is not a limit point of [0, 1] in R with respect to Or. In a similar way, one can
demonstrate that if x € R has the property that x < 0, then z is not a limit point of
[0,1] in R with respect to Og. This is the topic of Task [E8.2.2
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Example 8.4.5. Let (X,0x) be (R,Or). Let A = Q, the set of rational numbers.
Suppose that = belongs to R. Let U be a neighbourhood of = in R with respect to Og.
By definition of O, there is an open interval ]a, b such that a < x < b which is a subset
of U.

Since |a, b N Q is a subset of U N Q, we deduce that g belongs to U. We have proven
that, for every neighbourhood U of x in R with respect to Or, UNQ is not empty. Thus
z is a limit point of Q in R with respect to Og.

Notation 8.4.6. Suppose that x belongs to R. We denote by |z] the largest integer z
such that z < z. We denote by [z] the smallest integer z such that z > x.

Example 8.4.7. Let (X,Ox) be (R, Or). Let A = Z, the set of integers. Suppose that
x belongs to R, and that x is not an integer. Then ||z ], [2][ is a neighbourhood of z in
R with respect to Og.

[z] -1 Ed z [x] [2] +1

Moreover Z N ]|x], [x]] is empty. Thus z is not a limit point of Z in R with respect to
Ok.

Example 8.4.8. Let (X,Ox) be (R? Og2). Let A be the subset of R? given by

{@y) eR ||yl <1}
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Suppose that (z,y) € R? belongs to S*.

Then (z,y) is a limit point of A in R? with respect to Og2. Every neighbourhood of
(z,y) in R? with respect to Og2 contains an ‘open rectangle’ U to which (z, %) belongs.
We have that AN U is not empty.

To fill in the details of this argument is the topic of Task [E8.2.3] Suppose now that
(z,1) € R? does not belong to D?.

Then (z,y) is not a limit point of A in R? with respect to Op2. For let € € R be such
that
0<e<|(zy) -1

Let U, be the open interval given by
Jo - o204 2],
Let U, be the open interval given by

Jy=y+e2|.
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Then U, x Uy is a neighbourhood of (z,y) in R? whose intersection with A is empty.

To check this is the topic of Task [E8.2.4]

8.5. Closure

Definition 8.5.1. Let (X, Ox) be a topological space. Let A be a subset of X. The
closure of A in X with respect to Ox is the set of limit points of 4 in X.

Notation 8.5.2. Let (X, Ox) be a topological space. Let A be a subset of X. We shall
denote the closure of A in X with respect to Ox by clix o) (4).

Remark 8.5.3. The notation A is also frequently used to denote closure.
Remark 8.5.4. By Remark we have that A is a subset of cl(x o) (A).

Definition 8.5.5. Let (X, Ox) be a topological space. A subset A of X is dense in X
with respect to Ox if the closure of A in X with respect to Ox is X.

8.6. Examples of closure

Example 8.6.1. Let (X,0Ox) and A be as in Example We found in Example
that the limit points of A in X with respect to Ox are a and b. Hence cl(x 0 (A)
is X. Thus A is dense in X with respect to Ox.

Example 8.6.2. Let (X,0Ox) and A be as in Example We found in Example
that cl(x,0y) (A4) is {c,d}. Thus A is not dense in X with respect to Ox.

Example 8.6.3. Let (X,0Ox) and A be as in Example We found in Example
that cl(x,0,) (A) is {b,c,d,e}. Thus A is not dense in X with respect to Ox.

Example 8.6.4. We found in Example that 1 is the only limit point of [0, 1] in
R with respect to Og which does not belong to [0,1[. Thus clg o) ([0,1[) is [0,1]. In
particular, [0, 1] is not dense in R with respect to Og.

Example 8.6.5. We found in Example that every x € R is a limit point of Q in R
with respect to Og. In other words, clg o) (Q) is R. Thus Q is dense in R with respect
to OR.
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Example 8.6.6. We found in Example that if z € R is not an integer, then x is
not a limit point of Z in R with respect to Og. In other words, clr o) (Z) is Z. In
particular, Z is not dense in R with respect to Og.

Example 8.6.7. Let (X,Ox) be (R? Og2). Let A be as in Example We found
in Example that if (z,y) € R? does not belong to A, then (z,y) is a limit point
of A in R? with respect to Oz if and only if (x,y) belongs to S'. We conclude that
cl (R2,042) (A) is D?. In particular, A is not dense in R? with respect to Opo.
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E8.1. Exam questions

Task ES8.1.1. For which of the following subsets A of I? is m(A) a neighbourhood of
[(%, %)] in K2 with respect to Og2? Take the equivalence relation on K2 to be that of
Example [6.4.11

(1) 13:1] < 3.1

)

(2) [0,1] x ]

[l
ool
—
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Task E8.1.2. Let X = {a,b,c,d} be a set with four elements. Let Ox be the topology
on X given by

{0,{a},{a,d},{b,c}, {a,b,c}, {b,c,d}, X}.

What is the closure of {b} in X with respect to Ox? Find a subset A of X with two
elements, neither of which is b, with the property that A is dense in X with respect to
Ox.

Task E8.1.3. Let A =]—00,0[U]1,2[U[3,5]U]6,7].

—

I

0

—_ —e
N —
U
v —
D
-

What is the closure of A in R with respect to Or?
Task E8.1.4. Let A be the union of the set
{(:U,y) c R? |—1l<z< % and |[(z,y)| < 1}

and the set
{(x,y) € R? | % <z <1land [[(z,y)| < 1}.

What is the closure of A in D? with respect to Op2?

Task E8.1.5. Let X =]0,1[ x ]0,1[. Let Ox denote the subspace topology on X with
respect to (R?, Og2).
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|
I
!
! [ |
!
|
|

Find a subset Y of R? such that the closure of A in Y with respect to Oy is [%, %] X ] 0,3 [,
where Oy is the subspace topology on Y with respect to (R?, Ope).

Task E8.1.6. Let A =]2,1[ x [3,3[. Let

I? T2

denote the quotient map.

What is the closure of 7(A) in (T2, Op2)?

Task E8.1.7. Let A be the subset of R? given by the union of the sets

U {(59) lve

neN
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and

U {(m, 2z +2) |z € [an 2}_1}}-

neN
Gy G (1,1
oty (o) (170)

Prove that the closure of X in R? with respect to O is the union of X and the line
{0} x [0, 1].

01 (5D (1) (3:1) (1,1)

Task E8.1.8. Let X = |1,2[U]2,4[. What is the closure of X in R with respect to Or?

E8.2. In the lectures

Task E8.2.1. Prove that (T2, O;2) is homeomorphic to (S! x S, Og1,41), as discussed
in Example You may wish to proceed as follows.

(1) As in Example work with S! throughout this task as the quotient of I by
the equivalence relation generated by 0 ~ 1. In particular, think of Og: as the

quotient topology O/ ...
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(2) Let

g1
I—— st

denote the quotient map. Appealing to Remark and Task 77, observe that the
map

g1 X Mgl

IxI Sl x st

is continuous.

(3) Appealing to Task [E6.2.7, deduce from (2) that the map

T2 St x st

given by [(s,t)] — ([s], [t]) is continuous.

(4) Let t € I. Appealing to Task [E5.3.14] Task [E5.1.5] and Task [E5.3.17) observe

that the map

I

I———

given by s — (¢, s) is continuous.
(5) Let

T2

12 T2

denote the quotient map. Appealing to Task deduce from (1) and Remark
that the map

T2 Ofto

[———— 72

given by s — [(s, )] is continuous.

(6) Observe that mp2 (f2(0)) = 72 (ff(1)). By Task [E6.2.7, deduce that the map

given by [s] — [(t, s)] is continuous.
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(7) Asin (4) — (6), use the map

fi

I——

given by s — (s,t) to prove that the map

Sl T2

given by [t] — [(s,t)] is continuous.

(8) Let

St x St T2

denote the map given by ([s], [t]) — [(s,t)]. Observe that go f

fog=idgiys.

idp2, and that

(9) Let U be a subset of T? which belongs to Op2. Suppose that ([z],[y]) belongs
to g1 (U). Let U, denote the subset (g;)_l (U) of S'. By (6), we have that U,

belongs to Og1. Let U, denote the subset (gg)_1 (U) of S'. By (5), we have that
Uy belongs to Og1. Observe that ([z], [y]) belongs to U, x Uy, and that U, x U, is

a subset of g~ H(U).

(10) By definition of Qg1 g1, deduce from (8) that g~ !(U) belongs to Og1, g1. Con-

clude that ¢ is continuous.

(11) Observe that (2), (8), and (10) together establish that f is a homeomorphism.

Task E8.2.2. Let 2 € R be such that x < 0.

Prove that x is not a limit point of [0, 1] in R with respect to Og).

Task E8.2.3. Let (X,0x) and A be as in Example Suppose that (x,y) € R?

belongs to S!,
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Prove that (z,v) is a limit point of A in R? with respect to Opo.

Task E8.2.4. Let (X,0x) and A be as in Example Suppose that (z,y) € R?
does not belong to D?.

Prove that (z,y) is not a limit point of A in R? with respect to Oz, following the
argument outlined in Example You may find it helpful to look back at Example
B.2.3

E8.3. For a deeper understanding

Task E8.3.1. Let (X, Ox). Let U be a subset of X. Prove that U belongs to Ox if and
only if, for every = which belongs to X, there is a neighbourhood U, of z in (X, Ox)
such that U, is a subset of U.

Remark E8.3.2. Task [E8.3.1] gives a ‘local characterisation’ of subsets of X which
belong to Ox.

Task E8.3.3. Let (X,Ox) and (Y, Oy) be topological spaces. Let

X Y

be a map. Prove that f is continuous if and only for every x € X, and every neighbour-
hood Uy () of f(x) in Y with respect to Oy, there is a neighbourhood U, of x in X with
respect to Ox such that f(U,) is a subset of Uy(,). You may wish to proceed as follows.

(1) Suppose that f satisfies this condition. Let U be a subset of Y which belongs to
Oy. Suppose that = belongs f~1(U). Observe that U is a neighbourhood of f(z)
in Y with respect to Oy.
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(2) By assumption, there is thus a neighbourhood U, of x in X with respect to Ox
such that f(U,) is a subset of U. Deduce that U, is a subset of f~(U).

(3) By Task [E8.3.1] deduce that f~!(U) belongs to Ox. Conclude that f is continu-
ous.

(4) Conversely, suppose that f is continuous. Suppose that x belongs to X, and
that Uy(,) is a neighbourhood of f(z) in Y with respect to Oy. We have that
f (ffl(Uf(l,))) is a subset of Ug(,). Since f is continuous, observe that ffl(Uf(x))
is moreover a neighbourhood of x in X with respect to Ox.

Remark ES8.3.4. Task gives a ‘local characterisation’ of continuous maps.

Definition E8.3.5. Let (X,Ox) be a topological space. A set {A;},_; of (possibly
infinitely many) subsets of X is locally finite with respect to Ox if, for every x € X,
there is a neighbourhood U of z in (X, Ox) with the property that the set of j € J such
that U N A; is non-empty is finite.

Remark E8.3.6. If J is finite, then {A;},_; is locally finite.

Task E8.3.7. Let (X, Ox) be a topological space. Let {Vj},_; be a set of subsets of
X which is locally finite with respect to Ox. Suppose that V; is closed with respect to
Ox, for every j € J. Let K be a (possibly infinite) subset of J. Prove that (J;cx V;j is
closed with respect to Ox. You may wish to proceed as follows.

(1) Let z € X'\ (UjeK V]> Observe that since {V;},_; is locally finite with respect

to Ox, there is a neighbourhood U, of z in (X, Ox) with the property that the set
L of j € J such that U, NV} is non-empty is finite.

(2) Let U =UzN <ﬂj€LX \ Vj> Prove that U belongs to Ox.
(3) Observe that z € U.

(4) Prove that U N (UjeK V]> is empty, and thus that U is a subset of X \ V.

(5) By Task [E8.3.1} deduce that X \ <UjeK Vj) belongs to Ox.

Task E8.3.8. Let (X,Ox) be a topological space. Let {Vj}jeJ be a locally finite set
of subsets of X, with the property that X = |J e Vj. For every j € J, let Oy, denote
the subspace topology on V; with respect to (X,Ox). Suppose that V; is closed with
respect to Ox for every j € J. Let V be a subset of X such that V' NV} is closed with
respect to Oy, for every j € J. Prove that V is closed with respect to Ox. You may
wish to proceed as follows.

(1) Appealing to Task [E2.3.3| (3), observe that V N Vj is closed with respect to Ox.

(2) Prove that since {V;},_; is locally finite, so is {V NV;}, ;.
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(3) By Task deduce that (J;c; V N'Vj is closed with respect to Ox.

(4) Observe that V = J;c,; V NVj.

Task E8.3.9. Let (X,Ox) be a topological space. Let {V;},_; be a locally finite set
of subsets of X, with the property that X = Uje s V. For every j € J, let Oy, denote
the subspace topology on V; with respect to (X,Ox). Suppose that V; is closed with
respect to Ox for every j € J. Let U be a subset of X such that U N'V; belongs to Oy,
for every j € J. Prove that U belongs to Ox. You may wish to proceed as follows.

(1) Since U N Vj belongs to Oy;, observe that V; \ (U NVj) is closed with respect to
Oy, for every j € J.

(2) Observe that V;\ (UNV;) =V, N (X\U).
(3) By Task [E8.3.8] deduce that X \ U is closed with respect to Ox.

Task E8.3.10. Let (X, Ox) be a topological space. Let O’y be a topology on X such
that O is a subset of Ox. Let A be a subset of X. Suppose that x is a limit point of
A in X with respect to Ox. Prove that z is a limit point of A in X with respect to O

Task E8.3.11. Let (X,Ox) and (Y, Oy) be topological spaces. Let A be a subset of
X, and let B be a subset of Y. Prove that cl xxy,0,,,) (4 x B) is

Cl(X,OX) (A) X Cl(y7(9y) (B) .

Task E8.3.12. Let (X, Ox) be a topological space. Let A and B be subsets of X such
that A is a subset of B. Prove that cl(x o) (A) is a subset of clx o) (B).

Task E8.3.13. Let (X,Ox) be a topological space. Let A be a subset of X. Let Oy
denote the subspace topology on A with respect to (X,Ox). Let B be a subset of A
which belongs to Ox. Prove that cli40,)(B) is ANclix oy (B). You may wish to
proceed as follows.

(1) Suppose that x belongs to cl(4,0,)(B). In particular, we have that x belongs to
A. Let U be a neighbourhood of x in X with respect to Ox. By definition of O 4,
observe that A N U is a neighbourhood of x in A with respect to O4.

(2) Since = belongs to cl 4 0,) (B), observe that BN (AN U) is not empty.

(3) Since BN(ANU)is (BNA)NU, and since B is a subset of A, deduce that BNU
is not empty.

(4) Deduce that = belongs to cl(x 0, (B). Conclude that cli40,)(B) is a subset of
AN CI(X,OX) (B)

(5) Conversely, suppose that x belongs to A N clx ) (B). Suppose that U is a
neighbourhood of z in A with respect to O4. By definition of O4, observe that
there is a subset U’ of X which belongs to Ox with the property that U = ANU’.
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(6) Since 2 belongs to clx 0, (B), observe that BN U’ is not empty.

(7) Since B is a subset of A, we have that B = BN A. Deduce that (BN A)NU' =
BN (ANU')=BNU is not empty.

(8) Deduce that x belongs to cl4.0,) (B). Conclude that ANclx o) (B) is a subset
Of Cl(A,(’)A) (B)

(9) By (4) and (8), deduce that cli4.0,)(B) is ANclix o) (B).
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0.1. A local characterisation of closed sets

Proposition 9.1.1. Let (X, Ox) be a topological space. Let V' be a subset of X. Then
V' is closed with respect to Ox if and only if cl x,0,) (V) is V.

Proof. Suppose first that V is closed with respect to Ox. Suppose that x does not
belong to V. We make the following observations.

(1) By definition of X \ V, we have that x belongs to X \ V. Moreover, since V' is
closed with respect to Ox, we have that X \ V belongs to Ox. In other words,
X \ V is a neighbourhood of x in X with respect to Ox.

(2) By definition of X \ V' once more, we have that V' N (X \ V) is empty.

Together (1) and (2) establish that  is not a limit point of V' in X with respect to Ox,
for any = which does not belong to V. We conclude that clx o) (V) is V.

Suppose now that cl(x,0,) (V) is V. Suppose that z € X does not belong to V. By
definition of clx o) (V), we have that x is not a limit point of V' in X with respect to
Ox. By definition of a limit point, we deduce that there is a neighbourhood U, of x
such that V N U, is empty. We make the following observations.

(1) We have that
xX\v= {J {=}.

zeX\V

We also have that = belongs to U, for every z € X \ V, or, in other words, that {z}
is a subset of U for every # € X \ V. Thus we have that J,c y\y {2} is a subset of
Uzex\v Uz We deduce that X \ V' is a subset of [, x\y Us-

(2) We have that
vl U te]= UJ vnun).
zeX\V zeX\V
Since V NU, is empty for every x € X \ V, we have that UxeX\V (V NU,) is empty.
We deduce that V' N (UJJEX\V Ux) is empty. In other words, UxeX\V U, is a subset
of X\ V.

(3) Since U, belongs to Ox, for every z € X \ V, and since Ox is a topology on X,
we have that UxeX\V U, belongs to Ox.
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By (1) and (2) together, we have that J,cx\y Uz = X \ V. By (3), we deduce that
X \ V belongs to Ox. Thus V is closed with respect to Ox. O

Remark 9.1.2. We now, by Proposition have two ways to understand closed sets.
The first is ‘global’ in nature: that X \ V belongs to Ox. The second is ‘local’ in nature:
that every limit point of V belongs to V.

For certain purposes in mathematics it can be appropriate to work ‘locally’, whilst
for others it can be appropriate to work ‘globally’. To know that ‘local’ and ‘global’
variants of a particular mathematical concept coincide allows us to move backwards and
forwards between these points of view. This is often a very powerful technique.

9.2. Boundary

Definition 9.2.1. Let (X,Ox) be a topological space. Let A be a subset of X. The
boundary of A in X with respect to Ox is the set of x € X such that, for every neigh-
bourhood U of x in X with respect to Ox, there is an a € U which belongs to A, and
there is a y € U which belongs to X \ A.

Notation 9.2.2. Let (X, Ox) be a topological space. Let A be a subset of X. We shall
denote the boundary of A in X with respect to Ox by J(x 04)4.

Remark 9.2.3. Suppose that z € X belongs to 9 x,0,)A. Then z is a limit point of A
in X with respect to Ox.

Remark 9.2.4. Let x be a limit point of A which does not belong to A. Then x belongs
to 0<X70X)A.

However, as we shall see in Example [9.3.1] it is not necessarily the case that if a
belongs to A, then a belongs to J(x,0,)A. In particular, not every limit point of A
belongs to 0 x,0)A-

9.3. Boundary in a finite example

Example 9.3.1. , Let X = {a,b,c,d,e} be a set with five elements. Let Ox be the
topology on X given by

{0,{a},{b},{a,b},{b,e},{c,d},{a,b,e},{a,c,d},{b,c,d},{a,b,c,d},{b,c,d, e}, X}.

Let A = {b,d}. The neighbourhoods in X with respect to Ox of each of the elements
of A are listed in a table in Example To determine J(x o)A, we check, for each
element of A, whether each of its neighbourhoods both contain either a, ¢, or e, and

contain either b or d. We determined the limit points of A in X with respect to Ox in
Example which saves us a little work.
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Element Belongs to Jx,0,)A? Reason

a X Not a limit point.

b X The neighbourhood {b} does not contain any
element of X \ A.

c v Limit point which does not belong to A.

d v Every neighbourhood of d contains both ¢ and

d. We have that d belongs to A, and that ¢
belongs to X \ A.
e v Limit point which does not belong to A.

Thus 0 x,0)A = {c, d, e}.

9.4. Geometric examples of boundary

Example 9.4.1. Let (X,Ox) be (R, Or). Let A=1[0,1].

By Example we have that 1 is a limit point of [0, 1] in R with respect to Or which
does not belong to [0, 1[. Thus 1 belongs to d(g o) [0, 1[. By Example ??, we have that
all other limit points of [0,1[ in R with respect to Or belong to [0,1]. To determine
Ow,0p) [0, 1[, it therefore remains to check which elements of [0, 1] have the property
that each of their neighbourhoods contains at least one element of R\ [0, 1].

Let U be a neighbourhood of 0 in R with respect to Or. By definition of Og, there is
an open interval ]a, b[ such that a < 0 < b, and which is a subset of U.

There is an z € R such that a < z < 0. In particular, z belongs to R\ [0, 1].

1 [
] L

Cor
a x 0 b 1
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Since ]a,0[ is a subset of |a,b[, and since |a, b is a subset of U, we also have that x
belongs to U. This proves that if U is a neighbourhood of 0 in R with respect to Og,
then (R \ [0, 1[) NU is not empty. Thus 0 belongs to dg oy) [0, 1[.

Suppose now that 0 < z < 1.

[ Y p—
8
—_ =

Let 0 < € <min{z,1 —x}. Then |x — €,z + €[ is a neighbourhood of x in R with respect
to Og, and (R\ [0,1]) N ]z — €,x + €[ is empty.

I —

| | |
xr — € x xr -+ €

[ Q= p—
— =

Thus = does not belong to dg,e,) [0, 1[. We conclude that O o, [0,1[ is {0,1}.

Example 9.4.2. Let (X, Ox) be (R?, Og2). Let A = D2

Suppose that (z,y) belongs to R?\ D2.

Let € € R be such that
0<e< @y -1
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Let U, be the open interval given by
V2 V2
}f—%ﬂx+%{'
Let U, be the open interval given by
Jy— 2.y 22,

Then U, x Uy is a neighbourhood of (z,y) in R? whose intersection with D? is empty.

This can be proven by the same argument as is needed to carry out Task [E8:2.4] Thus
(x,%) is not a limit point of D? in R? with respect to Og2. In particular, (x,%) does not
belong to 8(R270R2)D2.

Suppose now that (x,y) € R? has the property that ||(x, )| < 1.

Let € € R be such that
0<e<1—|(zyl-

Let U, be the open interval given by
o=,

Let U, be the open interval given by
Ju—o2y+ 2.

Then U, x U, is a neighbourhood of (z,y) in R? whose intersection with D? is empty.
To check this is Task [E9.2.21
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In other words, (R? \ D*)N(U, x Uy) is empty. Thus (z, y) does not belong to 8(R2’OR2)D2.
Suppose now that ||(z,y)|| = 1. In other words, we have that (z,y) belongs to S*.

(z,y)

Every neighbourhood of (x,%) in R? with respect to Op2 contains an ‘open rectangle’ U
to which (x,%) belongs. Both D?> N U and (R2 \ DQ) N U are not empty.

Thus (z,y) belongs to 6(R27@R2)D2. To fill in the details of this argument is the topic of
Task [£9.2.4 We conclude that 8(R27OR2)D2 is St

Example 9.4.3. Let (X,Ox) be (R?, Ogs). Let A = I2.

Then Oz 0, ,)1 2 is the ‘border around I?’.

176



9.4. Geometric examples of boundary

In other words, 8(R2,OR2)I2 is ({0,1} x I) U (I x {0,1}). To prove this is the topic of
Task [£9.2.3

Example 9.4.4. Let (X,Ox) be (R%, Og2). Let A be an annulus Ay, for some k& € R
with 0 < k < 1, as in Notation [4.1.17]

Then 8(R2,0R2)Ak is the union of the outer and the inner circle of Ax. In other words,
the union of the set

{@y) eR? | |[(z,9)] =1}
and the set
{(@.y) € B[ (.9)] = k}.

To prove this is the topic of Task [£9.2.5 Suppose, for instance, that (x,y) € R? belongs
to the inner circle of Ay.
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Every neighourhood of (z,y) contains an ‘open rectangle’ around (z,y) which overlaps
both Aj, and the open disc which we can think of as having been cut out from D? to

obtain Aj.

Example 9.4.5. Let (X,Ox) be (D?,Op2). Let A be an annulus A as in Example
9.4.4

Then 9 D2,0D2)Ak is the inner circle of Ay.

To prove this is the topic of Task In particular if (z,y) € S' then, unlike in
Example (7,y) does not belong to D2’0D2)Ak. For there is a neighbourhood of
(x,7) in D? with respect to Op2 which does not overlap D? \ Ay, the open disc which
we can think of as having cut out of D? to obtain Ay.
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Example and Example demonstrate that given a set A, and a topological
space (X, Ox) such that A is a subset of X, the boundary of A in X with respect
to Ox depends upon (X, Ox). The next examples illustrate this further.

Example 9.4.6. Let (X, Ox) be (R?, Op2). Let T denote the subset of R? given by the
union of

{0,y)[0<y <1}

and
{(z,1) | -1 <z <1}.

Then OxT is T. We have that T2 is closed in R%2. To prove this is the topic of Task
[£9.2.7, Thus every limit point of T? belongs to T. Suppose that (z,y) belongs to T.

(z,y)

Then the intersection with R? \ T of every neighbourhood of (x,%) in R? is not empty.
To prove this is the topic of Task

Example 9.4.7. Let X be the subset of R? given by the union of

{0,y) | -1<y <2}

and
{(z,1) | =2 <z < 2}.
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Let Oy denote the subspace topology on X with respect to (R?, Og2). Let T be as in

Example [9.4.6]

Then dx 04T is {(~1,1),(0,1), (1,1), (0,0)}.

Every neighbourhood of each of these four points contains both a segment of X \ T and
a segment of T. A typical neighbourhood of (—1, 1), for instance, is the intersection of
an ‘open rectangle’ around (—1,1) in R? with T as depicted below.
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Let (z,y) be a point of T which is not one of these four.

Then we can find a neighbourhood of (z,y) whose intersection with X \ T is empty. For
instance, an intersection of a sufficiently small ‘open rectangle’ around (x,%) in R? with
X.

Suppose that (z,y) € X does not belong to T.
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Then we can find a neighbourhood of (x,y) whose intersection with X \ T is empty. For
instance, an intersection of a sufficiently small ‘open rectangle’ around (x,%) in R? with
X.

To fill in the details of this argument is the topic of Task [E9.2.9]
Example 9.4.8. Let X be the subset of R? given by the union of
{(0,y)[-2<y<1}

and
{(z,1) | =2 <z < 2}.

Let Ox denote the subspace topology on X with respect to (R% Op2). Let T be as in
Example
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Then a(X,Ox)T is {(_17 1)7 (17 ]-)7 (07 O)}

In particular (0,1) does not belong to d(x,0,)T, unlike in Example We can find a
neighbourhood of (0,1) whose intersection with X \ T is empty, such as the intersection
of a sufficiently small ‘open rectangle’ around (0,1) in R? with X.

To give the details of the calculation of Jx,0,)T is the topic of Task [E9.2.10

9.5. Connected topological spaces

Terminology 9.5.1. Let X be a set. Let Xy and X; be subsets of X. The union
Xo U Xj of Xg and X7 is disjoint if Xo N X7 is the empty set.

Notation 9.5.2. Let X be a set. Let Xy and X7 be subsets of X. If X = XoU X1, and
this union is disjoint, we write X = Xy U X;.

Definition 9.5.3. A topological space (X, Ox) is connected if there do not exist subsets
Xo and X; of X such that the following hold.

(1) Neither Xy nor X; is empty, and both belong to Ox.
(2 We have that X = Xy U X;.
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9.6. An example of a topological space which is not connected

Remark 9.6.1. We shall have to work quite hard to prove that any of our geometric
examples of topological spaces are connected. Instead, we shall begin with some examples
of topological spaces which are not connected.

Example 9.6.2. Let X =[1,2] U [4,7].

Let Ox denote the subspace topology on X with respect to (R, Or). The following hold.

(1) By Example we have that ]0,3[ belongs to Or. We have that [1,2] =
X NJo,3[.

By definition of Ox, we deduce that [1, 2] belongs to Ox.

(2) By Example we have that ]3,8[ belongs to Or. We have that [4,7] =
X N]3,8[.

By definition of Ox, we conclude that [4,7] belongs to Ox.
(3) We have that X = [1,2] U [4, 7], since [1,2] N [4, 7] is empty.
We conclude that (X, Ox) is not connected.

Remark 9.6.3. In (1), we could have chosen instead of |0, 3] any subset of R which
belongs to Or, which does not intersect [4, 7], and of which [1, 2] is a subset. In (2), we
could have chosen instead of |3, 8] any subset of R which belongs to Or, which does not
intersect [1,2], and of which [4, 7] is a subset.
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E9.1. Exam questions

Task E9.1.1. We saw in Example that O op) [0, 1[ is {0, 1}.

[ R p—
_ =

Prove that {0, 1} is also the boundary of each of |0, 1[, ]0, 1], and [0, 1] in R with respect
to O]R.

Task E9.1.2. Let A be the subset of R? given by the union of |0, 1[ x ]0, 1[ and [~1, 0[ x

10, 1].

(1) What is the boundary of A in R? with respect to Op2?

(2) What is the boundary of A in R x |0, oco[, where R x |0, oo is equipped with the
subspace topology with respect to (R?, Oz2)?

(3) Let X be the union of |—00,0[ x R and ]0,00[ x R. Let Ox denote the subspace
topology on X with respect to (R?, Og2). What is the boundary of A in X with
respect to Ox?

Task E9.1.3. Let (X, Ox) be as in Task [E8.1.2l What is the boundary of {a,c} in X
with respect to Ox? What is the boundary of {b,c} in X with respect to Ox? What is
the boundary of {d} in X with respect to Ox?

Task E9.1.4. Let X be the subset of R? which is a ‘solid triangle’.
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Let A be the subset of X depicted below. All of the lines, and the entire shaded area,
belong to A.

In other words, A is obtained from X by cutting out the inside of smaller ‘solid triangle’
inside it. What is 8(R2,@R2)A? What is d(x,0,)A4, where Ox is the subspace topology
on X with respect to (R?, Og2)?

Task E9.1.5. What is the boundary of D? x I in R3 with respect to Ogs?

Give a proof by appealing to Example [9.4.2] Task[E9.1.1] and Task[E9.3.11] What is the
boundary of D? x I in R? x I with respect to Op2,;? What is the boundary of D? x I

in D? x R with respect to Op2yg?

Task E9.1.6 (Continuation exam, August 2013). Let X be a subset of R? as depicted
below. In other words, we have two triangles which ‘meet at their tips’.

Let A be the subset of X obtained by removing the inside of a smaller copy of this shape,
as depicted below. All of the lines, and the entirety of both shaded areas, belong to A.
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What is 8(R2,(9R2)A? What is 8(X,OX)A?
Task E9.1.7. What is the boundary of Q in R with respect to Or?

Task E9.1.8. Let A be the subset of D? of Task [ES.1.4l

What is the boundary of A in D? with respect to Op2?

Task E9.1.9. View the letter K as a subset of R2.

For each of the following, find a subset X of R? such that K is a subset of X, and
such that 0 x,0,)K is as described, where Ox denotes the subspace topology on X with
respect to (R?, Ope).

(1) We have that 9x 0,)K consists of the four points depicted below.
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2) We have that Jx K consists of the two points depicted below.
( 7OX)

3) We have that 0 x K consists of the five points depicted below.
( 7OX)

(4) We have that 9(x 0,)K consists of the union of the two lines depicted below.

Task E9.1.10. Let (X, Ox) be a topological space. Explain why 0 x,0,)X is the empty
set.

Task E9.1.11. Let X be the union of D? and [3,4] x ]2, 3[.

Let Ox denote the subspace topology on X with respect to (R2,(9R2). Prove that
(X, Ox) is not connected.
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Task E9.1.12. Let X be the subset of I? given by the union of [0, i] X [0, i] and
[2:4] = [3.1].

Let

I? T2

be the quotient map. Let O x) denote the subspace topology on 7(X) with respect to
(T?,Op=2). Prove that (m(X), Ow(X)) is not connected.
E9.2. In the lecture notes

Task E9.2.1. Do the same as in Task for the proof of Proposition [9.1.1
Task E9.2.2. Let (z,y) € R? be such that ||(z,y)| < 1.

Prove that (z,y) does not belong to G(R;ORQ)DQ, following the argument outlined in
Example You may find it helpful to look back at Example [3.2.3]

Task E9.2.3. It was asserted in Example that 8(R27OR2)I 2 s

({0,1} x 1)U (I x {0,1}).

Prove this first as follows, along the lines of Example
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(1) Demonstrate that if (z,y) € R? does not belong to I%, then (x,y) is not a limit
point of I? in R? with respect to Oge.

(2) Demonstrate that if 0 < z < 1 and 0 < y < 1, then there is a neighbourhood U
of (z,y) in R? with respect to Og2 such that (]R2 \ I 2) N U is empty.

(3) Demonstrate that if (z,y) belongs to
({0,1} x ) U (I x{0,1}),

then every neighbourhood U of (z,y) in R? has the property that both I N U and
(R2 \ I 2) N U are not empty.

Give a second proof by appealing to Task [£9.3.11] Give a third proof by appealing to
Task [E7.2.9 and Task [E9.3.12

Task E9.2.4. Let (X,0x) and A be as in Example m Suppose that (z,y) € R?
belongs to S'.

(z,9)

Prove that (z,y) belongs to 8(R2,OR2)D2'

Task E9.2.5. Let A be an annulus Ay, for some k € R with 0 < k < 1, as in Notation
4117

Prove that 8(R27@R2)Ak is the union of the outer and the inner circle of the annulus, as
claimed in Example You may wish to proceed as follows.

(1) Let B be the ‘open disc’ of radius k centred at (0, 0).
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Demonstrate that dg2 o _,)B is the circle of radius k centred at (0,0).
VR
(2) Observing that Ay is D? \ B, appeal to Example and Task [£9.3.15

Task E9.2.6. Let A be an annulus Ay, for some k € R with 0 < k < 1, as in Notation
[z il

Prove that O(pz o ,)Ak is the inner circle of the annulus, as claimed in Example
You may wish to proceed as follows.

(1) Let B be the ‘open disc’ of radius k centred at (0, 0).

Appealing to (1) of Task nd Task 9 3.13| observe that O p2 o ,)B is the

circle of radms k; centred at

(2) Appeal to Task [E9.1.10{ and Task [E9.3.15

Task E9.2.7. Let T be the subset of R? of Example

Prove that T is closed in R? with respect to Og2. You may wish to proceed as follows.

(1) Observe that T is the union of {0} x [0,1] and [0,1] x {1}.
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(2) Appealing to Task [E3.3.1} observe that {0} x [0, 1] and [0, 1] x {1} are both closed
in R? with respect to Opa.

(3) Appealing to Task [E9.3.5) conclude from (1) and (2) that T is closed in R? with
respect to Opa.

Task E9.2.8. Let T be the subset of R? of Example

Prove that 8(R27@R2)T is T. You may wish to follow the argument outlined in Example
9.4.0)

Task E9.2.9. Let (X,0x) and T be as in Example

Prove that J(x,0,)T is {(~1,1),(0,1),(1,1),(0,0)}. You may wish to follow the argu-
ment outlined in Example

Task E9.2.10. Let (X,Ox) and T be as in Example [9.4.8]

Prove that dix 0,)T is {(=1,1),(1,1),(0,0)}.
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E9.3. For a deeper understanding

Task E9.3.1. Let (X,Ox) be a topological space. Let V be a subset of X which is
closed with respect to Ox. Let A be a subset of V. Prove that clx 0, (4) is a subset
of V. You may wish to appeal to Proposition [9.1.1

Task E9.3.2. Let (X,0Ox) be a topological space. Let A be a subset of X. Prove
that clx 0y)(A4) is equal to the intersection of all subsets V' of X with the following
properties.

(1) V is closed with respect to Ox.

(2) Ais a subset of V.

You may wish to appeal to Task

Corollary E9.3.3. Let (X, Ox) be a topological space. Let A be a subset of X. Then
clix,0x) (A) is closed.

Proof. Follows immediately from Task and the fact, observed as part of Remark
E1.3.2) that an intersection of (possibly infinitely many) subsets of X which are closed
with respect to Ox is closed with respect to Ox. O

Remark E9.3.4. In other words, clx o) (A) is the smallest subset of X which contains
A, and which is closed with respect to Ox.

Task E9.3.5. Let (X, Ox) be a topological space. Let A and B be subsets of X. Prove
that clx,0,) (AU B) is cl(x,0,) (4) Uclx 0y) (B). Youmay wish to proceed as follows.

(1) By Corollary [£9.3.3} we have cl(x o) (A) and cl(x 0 (B) are closed with respect
to Ox. By Remark [E£1.3.2) we thus have that cl(x,0,)(A) Uclx 0,) (B) is closed
with respect to Ox. Deduce by Task [£9.3.1] that clx 0,) (AU B) is a subset of

Cl(X,OX) (A) @] CI(X,Ox) (B)

(2) Observe that if z € X is a limit point of A or B in X with respect to Ox, then x
is a limit point of AU B in X with respect to Ox.

Task E9.3.6. Let (X,Ox) be a topological space. Let {A;},.; be an infinite set of
subsets of X. Give an example to demonstrate that clx o) (UicrA;) is not necessarily

Uierclx,0y) (Ai)-

Task E9.3.7. Let (X, Ox) be a topological space. Let A and B be subsets of X. Prove
that clx 0,) (AN B) is a subset of cl(x 0, (A) Nclix 0y (B).

Task E9.3.8. Let (X, Ox) be a topological space. Let A and B be subsets of X. Give
an example to demonstrate that cl x o) (4)Nclx o) (B) is not necessarily a subset of
clixox) (AN B). In particular, these sets are not necessarily equal.
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Task E9.3.9. Let (X,Ox) and (Y, Oy) be topological spaces. Let

X

Y

be a map. Prove that f is continuous if and only if for every subset A of X, we have
that f (CI(X@X) (A)) is a subset of cliv,0y) (f(A)). You may wish to proceed as follows.

(1) Suppose that the condition holds. Let V' be a subset of Y which is closed with

respect to Oy . By one of the relations of Table observe that cl(x o) (f_l (V))
is a subset of

FH(f (ixox (1)) -
(2) By hypothesis, we have that f (cl(X@X) (f71(v))) is a subset of
cvoy) (F (F71(V)) -
By one of the relations of Table [A72] deduce that

S (dixox (F7HOD)))

is a subset of

F (voy) (£ (F71))))
(3) By (1) and (2), deduce that clx o) (f71(V)) is a subset of

FH (vioy) (F (F71O0))) -

(4) By one of the relations of Table observe that f (f~!(V)) is a subset of V.
By Task [E8.3.12} deduce that cliy,o, (f (f_l(V))) is a subset of cliy 0, (V).

(5) Since V is closed in Y with respect to Oy, we have by Proposition that
V =cly,0,) (V). By (4), deduce that cliy,0, (f (f71(V))) is a subset of V.

(6) By (5) and one of the relations of Table deduce that f~1 (cliy,0,) (f (f71(V))))
is a subset of f=1(V).

(7) By (3) and (6), deduce that clx o) (f~(V)) is a subset of f~(V).

(8) By Remark [8.5.4] we have that f~!(V) is a subset of clx o) (f~' (V)). By (7),
deduce that cl(x o) (f7H(v))=V.

(9) By Proposition deduce that f~(V) is closed in X with respect to Ox. By
Task ??, conclude that f is continuous.

(10) Conversely, suppose that f is continuous. Suppose that z is a limit point of A in
X with respect to Ox. Let Uy(,) be a neighbourhood of f(x) in Y with respect to
Oy. Since f is continuous, observe that, by Task there is a neighbourhood
U of z in X with respect to Ox such that f(U,) is a subset of Uy(,).
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(11) Since z is a limit point of A in X with respect to Ox, we have that U, N A is not
empty. Thus f(U, N A) is not empty. Since f(Uy N A) is a subset of f(U;) N f(A),
deduce that f(U;) N f(A) is not empty.

(12) Since f(Uz) is a subset of Uy(,), deduce that Use,) N f(A) is not empty.

(13) Conclude that f(z) is a limit point of f(A) in Y with respect to Oy. Thus
[ (clix,0y) (A)) is a subset of cly,0,) (f(A)).

Task E9.3.10. Let (X, Ox) be a topological space. Let A be a subset of X. Prove that
J(x,0x)A is the intersection of clx o) (A4) and cl(x 0, (X \ A).

Task E9.3.11. Let (X,Ox) and (Y, Oy) be topological spaces. Let A be a subset of
X, and let B be a subset of Y. Prove that 0 xxy,0y,,)A X B is the union of

(0ix,0x)4) X cliy,04) (B)

and

clx.0x) (4) X (Ov.0r) B) -
For proving that 0 xxy,0xy)A X B is a subset of this union, you may wish to make use
of one of the set theoretic equalities listed in Remark

Task E9.3.12. Let (X,Ox) and (Y, Oy) be topological spaces. Let

X Y

be a homeomorphism. Let A be a subset of X. Prove that 0(y,0,)f(A) is f (0 (X,0x) A).
You may wish to proceed as follows.

(1) Suppose that y belongs to Jiy,0,)f(A4). Let U be a neighbourhood of y)
in X with respect to Ox. Observe that since f is a homeomophism, f(U) is a
neighbourhood of y in Y with respect to Oy.

(2) We have that

FHEA N ) = AN ).

Since f is a bijection, we have that f~!(f(A4)) = A, and that f~! (f(U)) = U.
Deduce that
LA N FU)) = ANT.

(3) Observe that by (1) and the fact that y belongs to J(y,0,)f(A4), we have that
f(A)N f(U) is not empty. Conclude by means of (2) that ANU is not empty.

(4) We have that

THYNFA)NFU) =Y\ FA))Nf! (f(U))
= (X\ ) N ).

In a similar manner as in (2) and (3), deduce that (X \ A) N U is not empty.
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(5) Observe that (2) and (3) demonstrate that f~!(y) belongs to d(x,0,)A. Conclude
that y belongs to f (0(X70X)A). Thus we have proven that dy,0,)f(A) is a subset

Of f (a(X,OX)A)'

(6) Suppose now that x belongs to d(x 0,)A. Let U be a neighbourhood of f(z) in YV’
with respect to Oy. Observe that then f~1(U) is a neighbourhood of = in X with
respect to Ox.

(7) Since x belongs to J(x o)A, we have that AN f~1U is not empty. Thus

fF(AnfHU))

is not empty. We have that f (A nfYu )) is a subset of

FANfHw).

Since f is a surjection, we also have that f (f_l(U)) = U. Deduce that f(A)NU
is not empty.

(8) Since = belongs to Jix o)A, we have that (X \ A)N f~1U is not empty. Observe
that since f is a bijection, we have that f(X \ A) =Y \ f(A4). In a similar manner
as in (6), deduce that (Y \ f(A)) N U is not empty.

(9) Observe that (7) and (8) demonstrate that f(x) belongs to dy,0,)f(A). Thus we
have proven that f (6(X7@X)A) is a subset of Jy,0,)f(4).

(10) Conclude from (5) and (9) that f (9(x,0)4) is Ov.0,)f(A).

Task E9.3.13. Let (X,Ox) be a topological space. Let A be a subset of X. Let Oy
denote the subspace topology on A with respect to (X,Ox). Let B be a subset of A
which belongs to Ox. Prove that d(4,0,)B is AN x 0,)B. You may wish to proceed
as follows.

(1) By Task [£9.3.10, we have that 04 0,)B is the intersection of cl 4 0,)(B) and
Cl(A,OA) (A \ B)

(2) Observe that since B belongs to O, and since B is a subset of A, we have that B
belongs to O 4. Thus A\ B is closed in A with respect to O4. Deduce by Proposition

that cl4,0,) (A\ B) is A\ B.

(3) Since B belongs to Ox, we have that X \ B is closed in X with respect to Ox. De-
duce by Proposition that clx,0,) (X \ B) is X\ B. Thus ANclix0,) (X \ B)
is A\ B.

(4) Observe that by (2) and (3), we have that cli4.0,) (A \ B) is ANclix 0,) (X \ B).

(5) Observe that by Task [[8.3.13, we have that cl 4 0,) (B) is ANclx,0y) (B).
(6) By (1), (4), and (5), conclude that 04 0,)B is Aﬂ(d(x,ox) (X\ B)Nclixoy) (B)).
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(7) Conclude by Task [£9.3.10| that 0(4,0,)B is AN 9 x,04)B-

Task E9.3.14. Let (X, Ox) be a topological space. Let A be a subset of X, and let B
be a subset of A. Prove that Jx 0,)(A\ B) is a subset of the union of 9 x 0,)A and
J(x,0x)B- You may wish to proceed as follows.

(1) Suppose that x belongs to J(x,0,) (A \ B). Suppose first that every neighbour-
hood U of z in X with respect to Ox has the property that (X \ A) N U is not
empty. Since z belongs 0 x 0, (A \ B), we also have that (A \ B)NU is not empty.
In particular, ANU is not empty. Deduce that = belongs to d(x,0)A.

(2) Suppose instead that there is a neighbourhood U of z in X with respect to Ox
such that (X \ A)NU is empty. We have that X \ (A \ B) is the union of X \ A and
B. Since x belongs 0(x 04 (A \ B), we have that (X \ (A\ B)) NU is not empty.
Deduce that B N U is not empty.

(3) Let U’ be any neighbourhood of x in X with respect to Ox. Suppose that BNU’
is empty. We have that U N U’ is a neighbourhood of x in X with respect to Ox.
Moreover, observe that (X \ A)N(U NU’) is empty, and that BN (U NU’) is empty.
Conclude that B N U’ is not empty.

(4) Since = belongs to J(x,0y) (A\ B), we have that (A\ B) N U’ is not empty. In
particular, we have that (X \ B) N U’ is not empty.

(5) Observe that, by (2) — (4), if there is a neighbourhood U of z in X with respect
to Ox such that (X \ A) N U is empty, then = belongs to J(x,0)B-

(6) Observe that, by (1) and (5), we have that d x o) (A \ B) is a subset of the union
of 6(X,(’)X)A and 8(X,OX)B'

Task E9.3.15. Let (X,Ox) be a topological space. Let A be a subset of X which is
closed with respect to Ox. Let B be a subset of X which belongs to Ox. Prove that
I(x,0x)(A\ B) is the union of Jx 0,)A and Jix 0,)B.- You may wish to proceed as
follows.

(1) Observe that, by Task [£9.3.14] we have that 0 x,0,)(A\ B) is a subset of the
union of Jx 0,)A and 9 x o) B.

(2) Since B is a subset of A, we have that X \ A is a subset of X \ B. Deduce that
(X \ A) N B is empty.

(3) Suppose that z € X belongs to B. Then B is a neighbourhood of z in X with
respect to Ox. Deduce by (2) that = does not belong to J(x 0)A.

(4) Suppose that = € X belongs to X \ A. Since A is closed in X with respect to Ox,
we then have that X \ A is a neighbourhood of = in X with respect to Ox. Deduce
that = does not belong to 9 x )4
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(5) Suppose that x belongs to Jx,0,)A. By (3) and (4), we have that x belongs to
A\ B. Let U be a neighbourhood of = in X with respect to Ox. Observe that since
x belongs to A\ B, we have that (A\ B)NU is not empty.

(6) Since z belongs to J(x,0,)A, we also have that (X \ A) N U is not empty. We
have that X \ (A \ B) is the union of X \ A and B. Deduce that (X \ (A\ B))NU

is not empty.

7) Conclude from (5) and (6) that if = belongs to O/x »,)A4, then z belongs to
( ) X)
a(X,Ox) (‘1 \ E )

(8) Arguing in a similar way, prove that if x belongs to J(x 0,)B, then x belongs to

(9) By (7) and (8), we have that the union of 9 x,0)A and 9 x,0,)B is a subset of
I(x,0x) (A\ B). Conclude by (1) that the union of 9 x,0)4 and J(x,0)B is equal
to 8(X,OX) (A \ B)

E9.4. Exploration — limit points in a metric space

Task E9.4.1. Let (X, d) be a metric space. Let Oy be the topology on X corresponding
to d of Task Let A be a subset of X. Suppose that x belongs to X. Prove that
z is a limit point of A in X with respect to Oy if and only if, for every € € R such that
e > 0, there is an a which belongs to A such that d(z,a) < e. You may wish to proceed
as follows.

(1) Suppose that z is a limit point of A in X with respect to O4. By Task [E4.3.2
we have that B(x) is a neighourhood of = in X with respect to O4. Deduce that
AN B(x) is not empty, and thus that there is an @ which belongs to A such that
d(z,a) < e.

(2) Suppose instead that, for every e € R such that e > 0, there is an a which belongs
to A such that d(x,a) < e. Let U be a neighbourhood of x in X with respect to
O4. By definition of Oy, there is a ( € R with € > 0 such that B¢(z) is a subset of
U. By assumption, there is an a in A such that a belongs to B¢(x). Deduce that
ANU is not empty. Conclude that that x is a limit point of A in X with respect
to Od.

Task E9.4.2. Let (X,d) be a metric space. Let A be a subset of X. Suppose that
x belongs to X. Let X be equipped with the topology O4 corresponding to d of Task
Prove that if A is closed in X with respect to Oy, then d(z, A) > 0 for every z
which does not belong to A. You may wish to proceed as follows.

(1) Since A is closed in X with respect to O4, we have, by Proposition that x is
not a limit point of A in X with respect to Ox. By Task[E9.4.1], deduce that there
is an € € R with € > 0 such that d(x,a) > € for all a which belong to A.
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(2) Deduce that d(z, A) > €, and thus that d(z, A) > 0.
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10.1. Connectedness in finite examples

Example 10.1.1. Let X = {a,b} be a set with two elements. Let Ox be the topology
on X given by

{0,{b}, X}
The only way to express X as a disjoint union of subsets which are not empty is:
X = {a} U {b}.
However, {a} does not belong to Ox. We conclude that (X, Ox) is connected.

Example 10.1.2. Let X = {a,b,c,d,e} be a set with five elements. Let Ox be the
topology on X given by

{0,{a},{a,b},{c,d},{a,c,d},{c,d, e}, {a,b,c,d},{a,c,d e}, X}.
The following hold.
(1) We have that X = {a,b} LU {c,d,e}.
(2) Both {a,b} and {c,d,e} belong to Ox.

We conclude that (X, Ox) is not connected.

10.2. (Q,O0q) is not connected

Example 10.2.1. Let Q denote the rational numbers. Let Og denote the subspace
topology on Q with respect to (R, Or). Let = € R be irrational. For instance, we can
take = to be v/2. The following hold.

(1) Since z is irrational, we have that

Q= (QnN]-o0,z[) U (QN]z,00).
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2) By Example [1.6.3] we have that |—oo, | belongs to Ogr. By definition of Og, we
(2) By g y o
deduce that Q N ]—o0, z[ belongs to Og.

y Example [1.6.3] we have that |z, 00| belongs to Or. By definition o , wWe
(3) By E le [1.6.3] h hat | [ bel Or. By definiti f Og
thus have that Q N ]z, co[ belongs to Og.

We conclude that (Q, Og) is not connected.

10.3. A characterisation of connectedness

Proposition 10.3.1. Let (X, Ox) be a topological space. Let {0,1} be equipped with
the discrete topology. A topological space (X, Ox) is connected if and only if there does
not exist a surjective, continuous map

X —— {0,1}.

Proof. Suppose that there exists a surjective continuous map

X . {0,1}.

The following hold.

(1) Both {0} and {1} belong to the discrete topology on {0,1}. Since f is continuous,
we thus have that both £~ ({0}) and f~! ({1}) belong to Ox.

(2) Since f is surjective, neither f=1 ({0}) nor £~ ({1}) is empty.

(3) We have that

FAqop Ut = (o1

= f*
= X.
(4) We have that
Fro N ({1) = {z € X | f(z) = 0 and f(z) =1}.
Since f is a well-defined map, the set
{reX|fx)=0and f(z)=1}

is empty. We deduce that
FHop Tt ({)

is empty.
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By (3) and (4), we have that

X = (o) ust (1.

We conclude, by (1) and (2), that (X, Ox) is not connected.
Conversely, suppose that (X, Ox) is not connected. Then there are subsets X, and
X1 of X with the following properties.

(1) Neither Xy nor X is empty, and both belong to Ox.

(2) We have that X = X, U X;.

Let

X4f>{0,1}

be the map given by

r—0 ifx e X,
r—1 ifze X;.

By (2), we have that f is well-defined. Since neither Xy nor X; is empty, we have that
f is surjective. Moreover we have that f~! ({0}) = X, and that f~! ({1}) = X;. Since
both Xy and X; belong to Ox, we deduce that f is continuous. O

Remark 10.3.2. For theoretical purposes, it is often very powerful to have a charac-
terisation of a mathematical concept in terms of maps. We shall see that Proposition
10.3.1} is very useful for carrying out proofs involving connected topological spaces.

10.4. (R, Og) is connected

Proposition 10.4.1. The topological space (R, Og) is connected.

Remark 10.4.2. This is one of the most important facts in the course! It is a ‘low-level’
result, which relies fundamentally on the completeness of R. Task guides you
through a proof.

To put it another way, Proposition[I0.4.1]is the bridge between set theory and topology
upon which connectedness rests. After we have proven it, we shall not need again to
work in a ‘low-level” way with (R, Ogr) in matters concerning connectedness. We shall
be able to argue entirely topologically.

Remark 10.4.3. Nevertheless Proposition is intuitively clear. Something would
be wrong with our notion of a connected topological space if it did not hold! It is for
this very reason that Proposition requires a ‘low-level’ proof. We have to think
very carefully about how our intuitive understanding that (R, Or) is connected can be
captured rigorously within the framework in which we are working.

203



10. Tuesday 4th February

10.5. Continuous surjections with a connected source

Proposition 10.5.1. Let (X,0Ox) and (Y,Oy) be topological spaces. Suppose that
(X, Ox) is connected. Suppose that there exists a continuous, surjective map

f
X ——Y.

Then (Y, Oy) is connected.
Proof. Let {0,1} be equipped with the discrete topology. Suppose that

vy —2— (0.1}

is a continuous, surjective map. Since f is continuous, we have by Proposition [5.3.1]
that

x 2 0y

is continuous. Since f is surjective, we moreover have that g o f is surjective. By

Proposition [10.3.1} this contradicts our hypothesis that (X, Ox) is connected.
We deduce there does not exist a continuous, surjective map

I f0,1.

By Proposition [10.3.1} we conclude that (Y, Oy) is connected.

Y

Corollary 10.5.2. Let (X, Ox) and (Y, Oy) be topological spaces. Let
f
X—Y

be a homeomorphism. Suppose that (X, Ox) is connected. Then (Y, Oy) is connected.

Proof. Since f is a homeomorphism, f is in particular a continuous bijection. By Task
a bijection in the sense of Definition is in particular surjective. By Propo-
sition [10.5.1} we deduce that (Y, Oy ) is connected. O

Corollary 10.5.3. Let (X, Ox) be a connected topological space. Let ~ be an equiva-

lence relation on X. Then (X/~,Ox/.) is connected.

Proof. Let

™

X

X/~

denote the quotient map with respect to ~. By Remark we have that 7 is contin-

uous. Moreover 7 is surjective. By Proposition [10.5.1, we deduce that (X/~,Ox/.) is
connected. O
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10.6. Geometric examples of connected topological spaces

Example 10.6.1. Let ]a, b[ be an open interval. Let O)ap[ denote the subspace topology
on |a, b[ with respect to (R, Og).

\ \
a b

By Example[7.3.10} we have that (Ja, b[, Oy, () is homeomorphic to (R, Og). By Corollary
10.5.2} we deduce that (Ja,b[, O, p)) is connected.

Example 10.6.2. Let [a,b] be a closed interval, where a < b. Let O, denote the
subspace topology on [a, b] with respect to (R, Or).

\ \
a b

We have that clg o) (Ja,b[) is [a,b]. By Example [10.6.1] and Corollary [E10.3.4} we

deduce that ([a,b], Ojq4)) is connected.

Remark 10.6.3. We can go beyond Example [10.6.1| and Example [10.6.2] Let X be a
subset of R, and let Ox be equipped with the subspace topology with respect to (R, Og).
Then (X, Ox) is connected if and only if X is an interval. To prove this is the topic of

Task [E10.3.5

Example 10.6.4. As in Example let ~ be the equivalence relation on I generated
by 0 ~ 1.

0 1

By Example [10.6.2] we have that (I, Oy) is connected. By Corollary [10.5.3] we deduce
that (I/~,Or/.) is connected.
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By Task [E7.3.10] there is a homeomorphism

I/~ —— st

By Corollary [10.5.2 we deduce that (S, Og1) is connected.

10.7. Products of connected topological spaces

Proposition 10.7.1. Let (X, Ox) and (Y, Oy) be connected topological spaces. Then
(X xY,Oxxy) is connected.

Proof. Let {0,1} be equipped with the discrete topology. Let

X><Y4f>{0,1}

be a continuous map. Our argument has two principal steps.

(1) Suppose that = belongs to X. By Task [E5.1.5, we have that the map

206

c
Yy —— X
given by y — xg for all y which belong to Y is continuous. By Task we also

have that the map

id
y 2y

is continuous. By Task we deduce that the map

Ce X id
X xY

given by y — (x,y) for all y which belong to Y is continuous. By Proposition m
we deduce that the map

v fo(ey xid) [0.1)

given by y — f(z,y) for all y which belong to Y is continuous. Since (Y, Oy) is
connected, we deduce, by Proposition that f o (¢, x id) is not surjective.
Since {0, 1} has only two elements, we deduce that fo(c; X id) is constant. In other
words, we have that

f(ﬂl’,yo) = f(xayl)
for all yg and y; which belong to Y.



10.7. Products of connected topological spaces

(2) Suppose that y belongs to Y. Let

Cy

X —Y

denote the map given by x +— y for all x which belong to X. Arguing as in (1), we
have that the map

¥ fo(id x ¢y) 0.1

given by x — f(x,y) for all x which belong to X is continuous. To carry out this
argument is the topic of Task Since (X, Ox) is connected, we deduce, by
Proposition that f o (id x ¢,) is not surjective. Since {0,1} has only two
elements, we deduce that f o (id x ¢,) is constant. In other words, we have that

f(xo,y) = f(ﬂfl,y)

for all ¢ and x; which belong to X.

Suppose now that zo and x; belong to X, and that yo and y; belong to Y. By (1),
taking = to be zg, we have that

f(zo,90) = f(zo,91)-

By (2), taking y to be y;1, we have that

f(xo,y1) = f(z1,91)-

We deduce that
f(zo,90) = f(z1,91)

Thus f is constant. In particular, f is not surjective. We have thus demonstrated that
there does not exist a continuous surjection

X xY

{0,1}.

By Proposition [10.3.1} we conclude that (X x Y, Oxxy) is connected.
O

Remark 10.7.2. Suppose that (X, Ox) and (Y, Oy) are topological spaces. The con-
verse to Proposition [10.7.1] holds: if (X x Y,Oxxy) is connected, then both (X,Ox)
and (Y, Oy) are connected. To prove this is the topic of Task [E£10.3.8
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10. Tuesday 4th February
10.8. Further geometric examples of connected topological
spaces

Example 10.8.1. By Proposition [10.4.1] we have that (R, Og) is connected. Applying
Proposition [10.7.1| repeatedly, we deduce that (R™, Ogn) is connected, for any n € N.

Example 10.8.2. By Example [10.6.2] we have that (I, Or) is connected.

By Proposition [10.7.1} we deduce that (12, O2) is connected.

Example 10.8.3. By Example[10.8.2] we have that (12, O;2) is connected. By Corollary
10.5.3, we deduce that (72, Op2) is connected.

Remark 10.8.4. By a similar argument, (M?,0,;2) and (K2, Og2) are connected. To
check that you understand how we have built up to being able to prove this is the topic

of Task [ET0.1.3

Example 10.8.5. By Example [10.8.2) we have that (12, O2) is connected. By Task
there is a homeomorphism

I’ —— D2

By Corollary [10.5.2, we deduce that (D?, Op:2) is connected.
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10.8. Further geometric examples of connected topological spaces

Example 10.8.6. By Example|10.8.5] we have that (D?, Op2) is connected. By Corol-
lary [10.5.3] we deduce that (S?, Og2) is connected.

S
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E10. Exercises for Lecture 10

E10.1. Exam questions
Task E10.1.1. Let X = {a, b, c,d} be a set with four elements.

(1) Let Ox be the topology on X given by
{0.{c},{b,c},{c,d},{a,b,c},{b,c,d}, X}

Is (X, Ox) connected?

(2) Let Ox be the topology on X given by
{0.{c},{a,b}.{a,b,c},{a,b,d}, X}

Is (X, Ox) connected?

(3) Find an equivalence relation ~ on X with the property that (X/~,Ox/.) is con-
nected, where Oy, is the quotient topology on X /~ with respect to the topology
Ox on X of (2).

Task E10.1.2. Let R\ Q be equipped with the subspace topology Op\q with respect
to (R, Ogr). Prove that (R\ Q, Og\q) is not connected.

Task E10.1.3. Prove that (K2, Og2) is connected. You may appeal without proof to
any results from the lecture, but may not assert without justification that any topological
space except (I, Oy) is connected.

Task E10.1.4. Prove that the following topological spaces are connected. Where pos-
sible, give both a proof which makes use of Task and a proof which does not.
You may appeal to any results from the lectures or tasks. In addition, if you may assert
the existence of homeomorphisms without proofs or explicit definitions.
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FE10. Exercises for Lecture 10

(1) The subset X of R? depicted below, equipped with its subspace topology Ox with
respect to (R?, Og2).

(2) The subset X of R? depicted below, equipped with its subspace topology Ox with
respect to (R?, Oge).

(3) The subset X of R? depicted below, equipped with its subspace topology Ox with
respect to (R?, Ope).

(4) The subset of R? depicted below, consisting of two circles joined at a point,
equipped with its subspace topology Ox with respect to (R?, Og2).
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F10.1. Exam questions

Task E10.1.5. Let X be a disjoint union of two circles of radius 1 in R?, centred at
(0,0) and (3,0). Let Ox denote the subspace topology on X with respect to (R?, Op2).

Let ~ be the equivalence relation on X generated by (1,0) ~ (2,0).

Without appealing to the fact that (X/~,Ox/.) is homeomorphic to the topological
space of Task |E10.1.4] (5), prove that (X/~,Ox/.) is connected.

Task E10.1.6. Let A be the subset of R? of Task [E8. 1.7
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Let X be the closure of A in R? with respect to Og2, which, as you were asked to prove
in Task [E8.1.7] is the union of X and the line {0} x [0, 1].

0.0 "ot (Lo (170)

Let Ox be the subspace topology on X with respect to (R?, Og2). Prove that (X, Ox)
is connected. You may wish to proceed as follows.

(1) Let O4 be the subspace topology on A with respect to (X,Ox). Prove that

(A,04) is connected by appealing to Task [E2.3.1) Task [E7.1.8] Example [10.6.2
Corollary [10.5.2] and Task [F110.3.9

(2) Deduce that (X, Ox) is connected by Task [E£10.3.4

Task E10.1.7. Let R be equipped with its standard topology Or. Let Og be the
subspace topology on Q with respect to (R, Or). Can there be a continuous map

R Q

which is a surjection?

E10.2. In the lecture notes

Task E10.2.1. Prove that (R, Og) is connected, by filling in the details of the following
argument. Let U be a subset of R which belongs to Or. By Task there is a set [
and an open interval U; for each i € I such that U = | |;c; U;. Suppose that U is neither
() nor R. Then there is an i € I such that one of the following holds.

(1) We have that Uj; is |a, o[, where a € R.
(2) We have that U; is |—o0, b[, where b € R,.

(3) We have that U; is |a, b[, where a € R and b € R.
Treat each of the cases separately, as follows.

(1) Then a is a limit point of U in R with respect to Og, and a does not belong to U.

(2) Then b is a limit point of U in R with respect to Og, and b does not belong to U.
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E10.3. For a deeper understanding

(3) Then both a and b are limit points of U in R with respect to O, and neither a
nor b belongs to U.

By Proposition deduce in each case that U is not closed with respect to Or. By
Task [E10.3.1} conclude that (R, Og) is connected.

Task E10.2.2. Carry out the argument needed for (2) of the proof of Proposition|10.7.1

E10.3. For a deeper understanding

Task E10.3.1. Let (X, Ox) be a topological space. Prove that (X, Ox) is connected if
and only if the only subsets of X which both belong to Ox and are closed with respect
to Ox are ) and X. You may wish to proceed as follows.

(1) Suppose that (X, Ox) is connected. Let X be a subset of X which belongs to Ox.
If Xy is closed with respect to Ox, we have that X \ Xy belongs to Ox. Moreover
Xo N (X \ Xp) is empty. Since (X,Ox) is connected, conclude that X is either ()
or X.

(2) Suppose that X is a subset of X which is neither () nor X. Observe that X \ Xy
is then neither () nor X. We have that X = Xy U (X \ Xp). If both Xy and X \ X
belong to Ox, deduce that (X,Ox) is not connected. Conclude that if Xy both
belongs to Ox and is closed with respect to Ox, then (X, Ox) is not connected.

Task E10.3.2. Let (X,Ox) and (Y, Oy) be topological spaces. Suppose that (X, Ox)
is connected. Let

f
X —Y
be a continuous map. Let Oy x) denote the subspace topology on f(X) with respect to
(Y, Oy). Prove that (f(X),O £ X)) is connected. You may wish to proceed as follows.
(1) Let

x —1 p(x)

be the map given by x — f(x). By Task [E5.1.9, observe that g is continuous.

(2) Moreover we have that g is surjective. By Proposition [10.5.1] conclude that
(f(X),0¢x)) is connected.

Task E10.3.3. Let (X,Ox) be a topological space. Let A be a subset of X, and let
O 4 denote the subspace topology on A with respect to (X, Ox). Suppose that (A,O04)
is connected. Let B be a subset of cl(x o) (A) with the property that A is a subset of
B. Let Op denote the subspace topology on B with respect to (X,Ox). Prove that
(B, Op) is connected. You may wish to proceed as follows.
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(1) Let {0,1} be equipped with the discrete topology Ogiscrete- Suppose that
/
B —— {01}

is continuous. Let

A B

denote the inclusion map. By Proposition [5.2.2] we have that ¢ is continuous. By
Proposition deduce that

o1
Af

{0,1}

is continuous.

(2) Since (A, O,) is connected, deduce by Proposition|10.3.1|that foi is not surjective.
Since {0, 1} has only two elements, deduce that f o is constant.

(3) By Task|E8.3.13} we have that clp 0, (A) is BNclx,0y) (A). Since B is a subset
of clix,05) (A) by assumption, deduce that clg o, (A) is B.

(4) By Task [E9.3.9, we have that f (clp o, (4)) is a subset of

CI({Ovl}vodiscrete) (f(A)) .
By (3), deduce that f(B) is a subset of

CI({O’I}yOdiscrete) (f(A)) *

(5) Demonstrate that cli(o.1},040ee) (f(4)) is f(A). By (4), deduce that f(B) is a
subset of f(A).

(6) By (2) and (5), we have that f is constant. In particular, we have that f is not
surjective. By Proposition |10.3.1} conclude that (B, Op) is connected.

Corollary E10.3.4. Let (X, Ox) be a topological space. Let A be a subset of X, and let
O 4 denote the subspace topology on A with respect to (X, Ox). Suppose that (A, O4)

is connected. Let O (x.0x)(A) denote the subspace topology on cl(x o) (A) with respect

to (R, Ogr). Then (cI(X’@X) (A) ’Ocl(x,ox)(A)> is connected.
Proof. Follows immediately from Task [£10.3.3} taking B to be clix o) (4). O

Task E10.3.5. Let X be a subset of R. Let Ox denote the subspace topology on X
with respect to (R, Or). Prove that (X, Ox) is connected if and only if X is an interval.
You may wish to proceed as follows.
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E10.3. For a deeper understanding

(1) Suppose that X is an interval. The difference possibilities for X are listed below,
where a and b belong to R, and a < b. In each case, fill in the details of the outlined
proof that (X, Ox) is connected.

Interval X  Proof that (X, Ox) is connected

R Proposition |10.4.1

la, b] Example [10.6.1

[a, b] Example [10.6.2

[a, b] Example [10.6.1] and Task [E10.3.3

Ja, b] Example [10.6.1| and Task [E10.3.3|

0 By inspection.

[a, a] By inspection.

la, oof Task [E7.1.5, Corollary [10.5.2] and Proposition [10.4.1
|—00,b] Task [E7.1.6, Corollary |10.5.2, and Proposition |10.4.1
[a, o0] Corollary [E10.3.4] and the case that X is |a, co|.
|—00,b] Corollary [E10.3.4] and the case that X is |—o0, b].

(2) Suppose that X is not an interval. By Task there is an zg € X, an 1 € X,
and a y € R\ X, such that 2o < y < x1. Let Xy be X N|—o0,y[, and let X7 be X N]y, co].
Observe that both Xg and X3 belong to Ox, and that X = Xy L X;. Conclude that
(X, Ox) is not connected.

Task E10.3.6. Let (X, Ox) be a connected topological space. Let R be equipped with
the standard topology Ogr. Let

X R

be a continuous map. Suppose that xg and x1 belong to X, and that f(zg) < f(x1).
Prove that, for every z € R such that f(xg) <y < f(z1), there is an x5 € X such that
f(x2) = y. You may wish to proceed as follows.

(1) Let Oy(x denote the subspace topology on f(X) with respect to (R, Og). Since
(X, Ox) is connected, deduce by Task [E m 2| that (f(X),Op(x)) is connected.
)
)

(2) By Task[E10.3.5 deduce that f(X) is an interval.

(3) Appeal to Task [E1.3.3]

Remark E10.3.7. Taking (X,Ox) to be (R, Or), or to be an interval equipped with
the subspace topology with respect to (R, Or), the conclusion of Task is exactly
the intermediate value theorem. As you may recall from earlier courses, this is one of
the handful of crucial facts upon which analysis rests.

Task E10.3.8. Let (X,Ox) and (Y,Oy) be topological spaces. Suppose that (X x
Y, Oxxy) is connected. Prove that both (X, Ox) and (Y, Oy) are connected. You may
wish to appeal to Proposition and Proposition [10.5.1
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Task E10.3.9. Let (X, Ox) be a topological space. Let {Aj}jeJ be a set of subsets of
X such that the following hold.

(1) For every j € J, we have that (A;,04,) is connected, where O4; denotes the
subspace topology on A; with respect to (X, Ox).

(2) We have that (J;c; 4, is X.

(3) We have that (.., A; is not empty.

jeJ
Prove that (X, Ox) is connected. You may wish to proceed as follows.

(1) Let {0,1} be equipped with the discrete topology. Let

x—1 o

be a continuous map. Suppose that j belongs to J. Let

i
J
Aj

X

denote the inclusion map, given by a — a. By Proposition we have that 7; is
continuous. By Proposition deduce that the map

017,
A, fols

{0,1}

given by a — f(a) is continuous.
(2) Since (Aj,O4,) is connected, deduce by Proposition [10.3.1| that f oi; is constant.

(3) Observe that the fact that (J;c; A; is X, that ();c; A; is not empty, and that
f oi; is constant for every j € J, implies that f is constant.

(4) In particular, f is not surjective. Thus we have demonstrated that there does not
exist a continuous surjection

X ——{0,1}.

By Proposition [10.3.1] conclude that (X, Ox) is connected.
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11. Monday 10th February

11.1. Using connectedness to prove that two topological
spaces are not homeomorphic

Remark 11.1.1. To prove that a given topological space (X, Ox) is not homeomorphic
to a particular topological space (Y, Oy ) is typically hard. In geometric examples, when
X and Y are infinite, there are many infinitely many maps from X to Y. Thus we
cannot simply list them all, and then check whether or not there is a homeomorphism
amongst them.

We must proceed in a more sophisticated way. The theory of connectedness which we
have developed furnishes us with our first powerful tool for proving that two topological
spaces are not homeomorphic.

Example 11.1.2. Let X = [1,2] U4, 7].
| | | |
1 2 4 7
Let Ox denote the subspace topology on X with respect to (R, Ogr). Arguing as in

Example we have that (X, Ox) is not connected.
Let O)y 5 be the subspace topology on [1,5] with respect to (R, Og).

1 5
By Task we have that ([1,5] ,(’)]1,5]) is connected. Suppose that
1,5] —— X
is a homeomorphism. By Corollary we then have that (X, Ox) is connected.
Thus we have a contradiction. We conclude that there does not exist a homeomor-
phism

[175] — X.

In other words, we have that (X, Ox) is not homeomorphic to ([1, 5] ,(9}1’5}).
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Remark 11.1.3. We can ‘snap off’ the half open interval |2, 5] from [1, 5].

This defines a bijection

However, this bijection is not continuous. To ‘snap off’ is not allowed in topology! The
details of this are the topic of Task [E11.2.1
It is very important to appreciate that to distinguish between (X, Ox) and

([17 5] 70]1,5]) ’

we must give a topological argument. From the point of view of set theory, [1,5] and X
are ‘the same’.

Remark 11.1.4. Let X =[1,2] U [4,7].

Let Ox denote the subspace topology on X with respect to (R, Og). Exactly the same
kind of argument as in Example |11.1.2| proves that (X, Ox) is not homeomorphic to

(11,5], Oy 5))-

There is a bijection between [1,5] and X, though it is harder to find than the bijection of
Remark [11.1.3] This is the topic of Task Once more, we see that it is necessary
to give a topological argument to distinguish between (X, Ox) and ([1,5] ,(’)]1,5]).
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11.2. Using connectedness to distinguish between topological spaces by removing points
11.2. Using connectedness to distinguish between topological
spaces by removing points

Example 11.2.1. Suppose that a and b belong to R, and that a < b. Let O, be the
subspace topology on [a, b] with respect to (R, Og).

We have that [a,b] \ {a} is ]a, b].

\ \
a b

Let Oy, be the subspace topology on ]a,b] with respect to ([a, b] ’O[a,b])' By Task
E2.3.1| and Task [E10.3.5, we have that (Ja,b], O},p) is connected.
Let O), 4 be the subspace topology on |a, b[ with respect to (R, Og).

Suppose that
[a’ b} - ]a’ b[
is a homeomorphism. Let O),\((a)} be the subspace topology on Ja,b[ \ {f(a)} with

respect to (Ja,b[, O}, ). We have that Ja, b[\{f(a)} is the union of Ja, f(a)[ and | f(a), b[.
This union is disjoint.

Moreover, both Ja, f(a)[ and |f(a), b] belong to Ojq y\{f(a)}- Thus

(Ja, [\ {f(a)}, Olapp i fa)})
is not connected. To generalise this argument is the topic of Task [E11.2.5
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By Task [E£7.1.20] since f is a homeomorphism, the map

Ja, o] —— Ja,b[\ {f(a)}

given by x +— f(r) is a homeomorphism. Since (]a,b],0),y) is connected, we deduce,
by Corollary [10.5.2] that
(Ja, B[\ {f (@)}, Olappir(a)})

is connected.
Thus we have a contradiction. We conclude that there does not exist a homeomor-
phism

[a,b] —— ]a,b|.

In other words, ([a, b] ,O[a’b]) is not homeomorphic to (]a, b, O]a,b[)-

Remark 11.2.2. Suppose that ag < a1 < bg < by belong to R. Let X be the union of
lap, a1[ and ]bo, b1[. Let Ox denote the subspace topology on X with respect to (R, Og).

ag ai bo by

Let
(Ja, b\ {f (@)}, Olappir(a)})

be as in Example By Task we have that
(I, o0\ {F (@)} Opapirisiany)

is homeomorphic to (X, Ox). Thus we can picture (Ja,b[\ {f(a)},Oppis@)) as fol-
lows.

Example 11.2.3. Suppose that a and b belong to R, and that a < b. Let O, be the
subspace topology on [a, b] with respect to (R, Og).

We have that [a,b] \ {a, b} is ]a, b].
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Let Oy, be the subspace topology on ]a, b with respect to ([a,b[,(’)[mb[). By Task
F2.3.1| and Task [E£10.3.5, we have that (]a,b[,(’)]a,b[) is connected. Let O, be the
subspace topology on [a, b[ with respect to (R, Og).

Let
[a,b] ——— [a,b]

be a homeomorphism. Let Ojq p\(£(a),£(5)} D€ the subspace topology on [a, b[\{f(a), f(b)}
with respect to ([a, b, O[a’b[). One of the following two possibilities must hold.

(I) One of f(a) or f(b) is a.

(IT) Neither f(a) nor f(b) is a.
Suppose that (I) holds. Since f is bijective, one of f(a) or f(b) is not a. Let us denote
whichever of f(a) or f(b) is not a by x. Then [a,b]\ {f(a), f(b)} is ]a,b] \ {z}. As in
Example [I1.2.1] we deduce that

(la, [\ {f(a), F(B)}, Olapp\i£(a).1(0)})

is not connected.

Suppose now that (II) holds. Since f is bijective, either f(a) < f(b) or f(a) > f(b).
Suppose that f(a) < f(b). We have that [a,b][\ {f(a), f(b)} is the union of [a, f(a)[ and
1f(a),b]\ {f(b)}, and this union is disjoint.
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[£(a), o[\ {(0)}

—
e —
« @ 7v) b

Moreover, both [a, f(a)[ and |f(a),b[\ {f(b)} belong to O, pp\{f(a),f(5)}- Thus

(la, [\ {f(a), F(B)}, Oapp\ i £(a).1(0)})

is not connected. A similar argument establishes that

(la, [\ {f(a), F()}, Oapp\i1(a).s(0)})

is not connected if f(a) > f(b). This is the topic of Task [E11.2.2
By Task since f is a homeomorphism, the map

Ja, b[ —— [a,b[\ {f(a), f(b)}

given by x +— f(r) is a homeomorphism. Since (Ja,b[,0),4() is connected, we deduce,
by Corollary [10.5.2] that

(fa, B[\ {f(a), F(B)}  Otapp L £(a).f0)})

is connected.
Thus we have a contradiction. We conclude that there does not exist a homeomor-
phism

[a,b] ——— [a,b].

In other words, ([a, b] ,O[mb]) is not homeomorphic to ([a, b, O[a,b[)'

Remark 11.2.4. Suppose that ap < a1 < by < b1 < ¢g < ¢1 belong to R. Let X be the
union of |ag, a1[, by, b1, and Jcy, c1[. Let Ox denote the subspace topology on X with
respect to (R, Og).

ap ai bo by Co C1

Let
(la, [\ {f(a), F(B)}, Olapp\i£(a).f(0)})
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11.2. Using connectedness to distinguish between topological spaces by removing points

be as in case (II) of Example By Task we have that
(fa, 00\ {F (@), F )}, Oagif(@).s00})

is homeomorphic to (X, Ox). Thus we can picture

(fa, B[\ {f(a), F(B)} Otapp L f(a).f0)})

as follows.

Example 11.2.5. Let (I,Or) be the unit interval. Suppose that 0 < ¢ < 1.
t

Let Op (43 be the subspace topology on I'\{t} with respect to (I, Or). Then (I'\ {t}, Op g1})
is not connected.

Suppose that

I—— st

is a homeomorphism.

Let Ogn\ (¢} be the subspace topology on S\ {f(t)} with respect to (S',Og1). We
have that (S \ {f(£)},Ogn\(@)}) is connected.
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Since f is a homeomorphism, we have by Task [E7.1.20] that there is a homeomorphism

I\ {t} SI\A{F®)}-

By Task we deduce that there is a homeomorphism
SO} —— I\ {1}

By Corollary since
(S"\A{F®)}, Os\g1})
is connected, we deduce that

(I\{t},Ongy)

is connected. Thus we have a contradiction. We conclude that there does not exist a
homeomorphism

I—— st

In other words, (I, Oy) is not homeomorphic to (5’1, OSI).

Remark 11.2.6. To prove the assertion that (I\ {t}, OI\{t}) is not connected, and the
assertion that (ST \ {f(t)},Og1\(f(t)}) is connected, is the topic of Task [E11.2.11

Remark 11.2.7. There exists a bijection between I and S'. This is the topic of Task
E11.4.3. Hence I and S' are ‘the same’ from the point of view of set theory. Thus, just
as in Remark a topological argument, such as that of Example must be
given to prove that (I, ;) is not homeomorphic to (S*, Og1).

Example 11.2.8. Suppose that n > 1 belongs to N. Let R be equipped with the
standard topology Ogr. Let R™ be equipped with the product topology Orn of Notation
[E3.3.8] Suppose that = belongs to R"™. Suppose that

RTL

R

is a homeomorphism. Let O {¢(,)} be the subspace topology on R\ {f(x)} with respect
to (R, Ogr).

f(x)

By Task [E11.2.5, we have that (R \ {f(7)}, Og\(f(z)}) is not connected.
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Let Ogn\ (5} be the subspace topology on R™ \ {x} with respect to (R",Ogn). By Task
E11.3.1} we have that (R \ {z}, Ogn\(,}) is connected. Since f is a homeomorphism,
we have by Task [£7.1.20 that there is a homeomorphism

R™ A\ {z} RA{f(2)}.

By Corollary [10.5.2] we deduce that

(R\{f(®)}, Or\(5()})

is connected. Thus we have a contradiction. We conclude that there does not exist a
homeomorphism

Rn

R.

In other words, (R, Or) is not homeomorphic to (R", Ogn).

Remark 11.2.9. Example [11.2.§] is intuitively evident. We cannot bend or squash
ourselves in such a way that we become a line! However, there is a bijection between R
and R", for any n > 1! This is the topic of Task

Moreover, to prove that R™ is not homeomorphic to R” when m # n, m > 2, and
n > 2, is much harder. One needs more powerful techniques.
11.3. Connected components

Terminology 11.3.1. Let (X, Ox) be a topological space. Let A be a subset of X, and
let O 4 be the subspace topology on A with respect to (X,Ox). Then A is a connected
subset of X with respect to Ox if (A,04) is a connected.

Terminology 11.3.2. Let (X, Ox) be a topological space. Suppose that x belongs to
X. Let A be a connected subset of X with respect to Ox such that the following hold.

(1) We have that z belongs to A.

(2) For every connected subset B of X with respect to Ox to which x belongs, we
have that B is a subset of A.

We refer to A as the largest connected subset of X with respect to Ox to which x
belongs.

We do not yet know whether, for a given x which belongs to X, there is a subset
A of X which has the property that it is the largest connected subset of X with
respect to Ox to which x belongs. We shall now demonstrate this.
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Remark 11.3.3. Let (X,Ox) be a topological space. Suppose that x belongs to X.
Let Ag and A; be connected subsets of X with respect to Ox which both satisfy (1)
and (2) of Terminology [11.3.2} Then Ay = A;. To check that you understand this is the

topic of Task

Definition 11.3.4. Let (X, Ox) be a topological space. Suppose that x belongs to X.
The connected component of x in (X,Ox) is the union of all connected subsets of X
with respect to Ox to which x belongs.

Notation 11.3.5. Let (X, Ox) be a topological space. Suppose that x belongs to X.
We denote the connected component of z in (X, Ox) by Iy o)

Remark 11.3.6. Let (X,Ox) be a topological space. Suppose that x belongs to X.
Then {z} is a connected subset of X with respect to Ox. This is the topic of Task

Thus z belongs to FQ(UX’OX).

Proposition 11.3.7. Let (X,Ox) be a topological space. Suppose that = belongs to

X. Then I”(”X Ox) is a connected subset of X.

Proof. Let {A;};c; be the set of connected subsets of X with respect to Ox to which

x belongs. We have that {z} is a subset of (,c; A;. By Task [E10.3.9, we deduce that
F’(”X Ox) = Uiel A; is a connected subset of X with respect to Ox. O

Remark 11.3.8. Let (X, Ox) be a topological space. Suppose that x belongs to X. Let
A be a connected subset of X with respect to Ox to which x belongs. By definition of
FfX Ox) We have that A is a subset of FQ(CX Ox)" By Proposition [11.3.7] we conclude that

F‘(’JX Ox) is the largest connected subset of X with respect to Ox to which x belongs.

11.4. Examples of connected components

Example 11.4.1. Let (X, Ox) be a connected topological space. For example, we can
take (X,Ox) to be (D% Op2).

Suppose that x belongs to X.
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We have that X is a connected subset of X with respect to Ox, for which (1) and (2)

of Terminology [11.3.2] hold. By Remark [11.3.3] and Remark [11.3.8] we conclude that

F:(EX7OX) - X.

Example 11.4.2. Let X be a set. Let Ox be the discrete topology on X. Suppose that
x belongs to X. Let A be a subset of X to which x belongs. Let O4 be the subspace
topology on A with respect to (X,Ox). Then Oy4 is the discrete topology on A. To

verify this is Task [E11.2.8
Suppose that A has more than one element, so that A\ {z} is not empty. We have

that

A=A{zpu(A\{z}).
Since O 4 is the discrete topology on A, every subset of A belongs to Q4. In particular,
both {z} and A\ {z} belong to O4, Thus (A, O,4) is not connected. In other words, A

is not a connected subset of X with respect to Ox.
We conclude that I'ly , | = {z}.

Example 11.4.3. Let X = {a,b,c,d} be a set with four elements. Let Ox be the
topology on X given by

{0,{a}, {b},{d},{a,b},{a,d},{b,c}, {b,d},{a,b,c}, {a,b,d}, {b,c,d}, X}.

Table lists the connected subsets of X with respect to Ox. By inspecting Table
and by Remark [T1.3.3] and Remark [I1.3.8] we conclude that the connected components
in (X, Ox) of the elements of X are as follows.

Element Connected component

{a}
{b, ¢}
{b, ¢}
{d}

Qo o Qe

Example 11.4.4. Let Q be the set of rational numbers. Let Og be the subspace
topology on Q with respect to (R, Or). Suppose that g belongs to Q. Let A be a subset
of Q to which ¢ belongs. Let O 4 be the subspace topology on A with respect to (Q, Og).
By Task we have that O is the subspace topology on A with respect to Og.

Suppose that r belongs to A, and that r is not equal to gq. There is an irrational
number x with ¢ < z < r.

The following hold.
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(1) Since z is irrational, and thus does not belong to A, we have that
A= (AN]—oo,z[) U (AN]x,o0]).
(2) We have that ¢ belongs to A N ]—oo,z[, and that r belongs to AN |z,00[. In
particular, neither A N]—o0,z[ nor AN ]z, oco[ is empty.

(3) Since both |—o0, z] and |z, 00| belong to Og, and since O 4 is the subspace topology
on A with respect to (R, Ogr), we have that both AN]—o0, z[ and AN]z, oo[ belong
to Oy4.

Thus (A, O4) is not connected. In other words, A is not a connected subset of Q with
respect to Og. We conclude that F‘(IQ 0g) 18 {q}.

Example 11.4.5. Let X = [1,2] U [4,7].

Let Ox be the subspace topology on X with respect to (R, Or). Suppose that x belongs
to [1,2].

\ \ \ \ \
1 z 2 4 7

By Task [E2.3.1{ and Task [E10.3.5] we have that [1,2] is a connected subset of (X, Ox).
Suppose that A is a subset of X to which x belongs, and which has the property that

AN[4,7] is not empty.

Let O4 be the subspace topology on A with respect to (X, Ox). The following hold.
(1) We have that A= (AN[L,2))U(AN[4,7]).

(2) We have that = belongs to AN [1,2]. In particular, AN [1,2] is not empty. By
assumption, we also have that A N [4,7] is not empty.

(3) As demonstrated in Example both [1, 2] and [4, 7] belong to Ox. Thus both
AN(1,2] and AN [4,7] belong to O4.
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Thus (A, O4) is not connected. In other words, A is not a connected subset of X with
respect to Ox. By Remark|11.3.3|and Remark|11.3.8) we conclude that FTX,OX) is [1,2].

A similar argument demonstrates that if « belongs to [4, 7], then iy oy) 18 [4,7]. To
fill in the details is the topic of Task [E11.2.9

11.5. Number of distinct connected components as an
invariant

Remark 11.5.1. If two topological spaces are homeomorphic, then they have the same
number of distinct connected components. This is the topic of Task

Therefore, to prove that two topological spaces are not homeomorphic, it suffices to
count their respective numbers of distinct connected components, and to observe that
they are different. This is a gigantic simplification! It is so much of a simplification that
it is only useful to a certain extent, as we shall see.

In particular, it is most definitely not the case that two topological spaces are home-
omorphic if and only if they have the same number of distinct connected components.
There are many connected topological spaces which are not homeomorphic!

Nevertheless, the idea that we can associate to complicated gadgets, such as topolog-
ical spaces, simpler invariants, which we can calculate with more easily, is of colossal
importance in mathematics. These invariants might be: numbers; algebraic gadgets such
as groups, vector spaces, or rings; or other structures.

Thus the number of distinct connected components of a topological space is the be-
ginning of a fascinating story!

Example 11.5.2. Let T be the subset of R? given by the union of
{(0,y)[-1<y<1}

and
{(z,1) | -1 <z <1}.

Let Ot be the subspace topology on T with respect to (R?, Opo).

Let | be the subset of R? given by

{(0,y) |0<y <1},

Let O) be the subspace topology on | with respect to (R?, Og2).
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Suppose that

- f

is a homeomorphism. Let x be the point (0,1) of T.

Let Or\(y) be the subspace topology on T\ {z} with respect to (T,Or). Then
(T\{z}, O1\(a})

has three distinct connected components.

Let O)\{f(x)} be the subspace topology on I\ { f(z)} with respect to (I, Oj). Suppose that
f(z)is (0,0) or (0,1).

Then (I\{f(x)},On{f@)}) is connected. Suppose that f(x) is not (0,0) or (0,1).
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Then (I\{f(2)},On(f@)}) has two distinct connected components.

Since f is a homeomorphism, we have by Task that there is a homeomorphism

T\ {z} INA{f(2)}-

By Corollary since
(T\ {2}, On\(2)

has three distinct connected components, we deduce that

(N {f(@)}, Ongr@yy)

has three distinct connected components. Thus we have a contradiction. We conclude
that there does not exist a homeomorphism

T l.

In other words, (T, Or) is not homeomorphic to (I, O)).

Remark 11.5.3. To fill in the details of the three calculations of numbers of distinct
connected components in Example [11.5.2]is the topic of Task |[K12.2.1
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Subset A Connected? Reason

0

{a}
{0}
{c}
{d}

Ra T NI NI N NN

{a,b} A = {a} U {b}, and both {a} = AN {a} and
{b} = AN {b} belong to O 4.

{a,c} A = {a} U{c}, and both {a} = AN {a} and
{c} = An{b,c,d} belong to O 4.

{a,d} X A = {a} U {d}, and both {a} = AN {a} and
{d} = An{d} belong to O 4.

>

{b,c} v

{b,d} X A = {b} U {d}, and both {b} = AN {b} and
{d} = An{d} belong to O 4.

{c,d} X A = {c}Uu{d}, and both {c¢} = AN {b,c} and
{d} = An{b,d} belong to O4.

{a,b,c} X A= {a}U{b,c}, and both {a} = AN {a} and
{b,c} = An{b,c} belong to O 4.

{a,b,d} X A ={a}U{b,d}, and both {a} = AN {a} and
{b,d} = AN {b,d} belong to O4.

{a,c,d} X A ={a}U{c,d}, and both {a} = AN {a} and
{¢,d} = AN {b,c,d} belong to O4.

{b,c,d} X A = {b,c} U{d}, and both {b,c} = An{b,c}
and {d} = AN {d} belong to O 4.

X X X = {a} U{b,c,d}, and both {a} and {b,c,d}

belong to Ox.

Table 11.1.: Connected subsets of the topological space (X, Ox) of Example|11.4.3] For
each subset A of X, we denote the subspace topology on A with respect to
(X,0x) by O4.
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E11.1. Exam questions

Task E11.1.1. Let A be the subset of I? given by the union of [0, 4—11] X [%,%] and

[5.1) < [3.4]-

Let

I? T2

be the quotient map. Let O 4 be the subspace topology on 7(A) with respect to (T2, Op=).
Let X be the subset of R? given by the union of D? and

{(z,y) eR*[||(z — 3,y) < 1}.

Let Ox be the subspace topology on X with respect to (R?, Og2). Is (W(A),OW(A))
homeomorphic to (X, Ox)?

Task E11.1.2. Suppose that a and b belong to R, and that a < b. Let O, be the
subspace topology on [a, b[ with respect to (R, Og).

Let Oj,p be the subspace topology on |a, b[ with respect to (R, Og).
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Prove that ([a, b[,O[ayb[) is not homeomorphic to (]a, b[,O}a,b[).

Task E11.1.3. Suppose that a and b belong to R, and that a < b. Let O),3 be the
subspace topology on |a, b] with respect to (R, Og).

Prove that (]a, b], O a’b]) is not homeomorphic to (]a, b, O]a,b[)' You may wish to proceed
by appealing to Task [E11.1.2] and to Task

Task E11.1.4. Suppose that a and b belong to R, and that a < b. Let O, be the
subspace topology on [a, b] with respect to (R, Og).

Prove that ([a, b, O[a’b]) is not homeomorphic to (]a, b, O]a,b])' You may wish to proceed
by appealing to Example [I1.2.3] and to Task

Remark E11.1.5. Suppose that a < b belong to R. Let Oy}, Oja), Ojap|; and Ja, ]

be the subspace topologies with respect to (R, Ogr) on [a, b], ]a, b], [a,b], and ]a, b] respec-

tively. Assembling Example Example [11.2.3] Task [E11.1.2] Task and

Task [E11.1.4} we have proven that no two of ([a, b] ,(’)[ayb]), (]a, b, O]avb[), ([a, b, O[mb[)’
(Ja,0], O

and a,b] ) are homeomorphic.
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Task E11.1.6. Let X be a figure of eight, viewed as a subset of R?. Let Ox be the
subspace topology on X with respect to (R?, Ogo).

Prove that (X, Oy) is not homeomorphic to (S, Og1).

Can you find an argument which does not involve removing the junction point of the
figure of eight, depicted below?

Task E11.1.7. Let (X, Ox) be the figure of eight of Task [E11.1.6| Prove that (X, Ox)
is not homeomorphic to the unit interval (I, Oy).

You may wish to appeal to Task |[K11.3.1
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Task E11.1.8. Let X = {a,b,c} be a set with three elements. Let Ox be the topology
on X given by

{0,{a},{c},{a,b},{a,c}, X}

List all the subset of X, and determine whether each is a connected subset of X with
respect to Ox. For each which is not, explain why not. Find the connected component
in (X, Ox) of each element of X.

Task E11.1.9. Let X = {a,b,c,d,e} be a set with five elements. Let Ox be the
topology on X given by

{0,{b},{e},{a,b},{b,e},{c,d},{a,b,e},{b,c,d},{c,d, e}, {a,b,c,d},{b,c,d, e}, X}.

Find the distinct connected components of (X, Ox). To save yourself a little work, you
may wish to glance at Corollary [E11.3.15| before proceeding.

Task E11.1.10. Let X =]—00,0[U]1,2[U[3,5]. Let Ox be the subspace topology on
X with respect to (R, Og).

o -
—_
N —
[ p—
G —

Prove that (X, Ox) has three distinct connected components.

Task E11.1.11. Let X = I? U ([3,4] x [0,1]). Let Ox be the subspace topology on X

with respect to (R?, Op2).

Let ~ be the equivalence relation on X which you defined in Task Prove that
(X/~,0x/~) has two distinct connected components.

=0 =5

Task E11.1.12. Let Osyg be the set of subsets U of R such that if x belongs to U,
then there is a half open interval [a, b[ such that = belongs to [a,b[, and such that [a, b]
is a subset of U.
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—

Check that Osqg defines a topology on R. Suppose that x belongs to R. Prove that the
connected component of z in (R, Oserg) is {z}.

Remark E11.1.13. The topological space (R, Osqrg) is known as the Sorgenfrey line.
The topology Osqrg is also known as the lower limit topology on R.

Task E11.1.14. Let (X,Ox) be a topological space. Let Ay and A; be connected
subsets of X with respect to Ox. Is it necessarily the case that Ag N A; is a connected
subset of X? You may find it helpful to take (X, Ox) to be (R?, Og2).

E11.2. In the lecture notes

Task E11.2.1. In the notation of Example [11.1.2] define a map

[0,5] i»X

which captures the idea of ‘snapping off’ ]2, 5] and ‘moving it’ to |4, 7]. Prove that f is
a bijection. Prove that f is not continuous.
Task E11.2.2. In the notation of Example [11.2.3] prove that if (I) holds and f(a) >
f(b), then

(la, b0\ {f(a), F(B)}, Otai\if(a).f0)})

is not connected.

Task E11.2.3. Suppose that a < z < b belong to R. Let O),; denote the subspace
topology on Ja,b[ with respect to (R, Og). Let Ojq (s} denote the subspace topology
on Ja, b \ {x} with respect to (Ja,b[, Oq)-

\ \ \
a x b

Suppose that ag < a1 < by < by belong to R. Let X be the union of |ag, a1[ and ]bg, by |[.
Let Ox denote the subspace topology on X with respect to (R, Og).

ag ai b() bl
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Prove that (Ja,b[\ {z}, Ojqpp(z}) is homeomorphic to (X,Ox). You may wish to pro-
ceed as follows.

1) Let O, . denote the subspace topology on |a, x| with respect to
] b [
(Ja, 00\ {=}, Opappfay) -

Let Oy44, denote the subspace topology on ]ag, a1[ with respect to (X, Ox).

[ [
ao ai

By Task and Example observe that there is a homeomorphism

la, x| LN lag, a1].

2) Let Oy, denote the subspace topology on |z, b| with respect to
] K [
(Ja, o[\ {z}, O ppyfay) -

Let Oy, p,[ denote the subspace topology on ]bo, b1[ with respect to (X, Ox).

bo by
By Task and Example observe that there is a homeomorphism

J1

]IL‘, b[ — ]bo, bl[ .
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(3) By Task [E7.3.5] deduce from (1) and (2) that there is a homeomorphism

Ja,b[\{z} —— X.

Task E11.2.4. Suppose that a < x1 < ... < z, < b belong to R. Let Oy, denote
the subspace topology on ]a, b[ with respect to (R, Or). Let Oy pp fa,,....0,} denote the
subspace topology on ]a,b[\ {z1,...,z,} with respect to (]a, b, O]a,b[)'

| | | |
a 5[,‘1 ,fljn b

Suppose that af < al < ... < a} < a7 belong to R. Let X be

U Jab,ail.

1<i<n

Let Ox denote the subspace topology on X with respect to (R, Og).

Prove that (]a, b\ {x1,...zn}, O}a,b[\{ml,...,mn}) is homeomorphic to (X, Ox). You may
wish to proceed by induction, appealing to Task [K11.2.3] and to Task

Task E11.2.5. Let X be a subset of R. Let Ox be the subspace topology on X with
respect to (R, Or). Suppose that x belongs to R. Let Ox\{«} be the subspace topology
on X \ {z} with respect to (X, Ox). Prove that (X \ {x}, Ox\(4) is not connected.

Task E11.2.6. Let (X, Ox) be a topological space. Suppose that = belongs to X. Let
Ap and A; be connected subsets of X with respect to Ox which both satisfy (1) and (2)
of Terminology [11.3.2] Prove that Ay = A;.

Task E11.2.7. Let X = {z} be a set with one element. As discussed in Example 77,
the unique topology Ox on X is given by {0, X}. Then (X, Ox) is connected. Check
that you understand why!

Task E11.2.8. Let X be a set. Let Ox be the discrete topology on X. Let A be a
subset of X. Let O4 be the subspace topology on A with respect to (X,Ox). Prove
that O4 is the discrete topology on A.
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Task E11.2.9. Let (X, Ox) be as in Example [11.4.5

Prove that if 2 belongs to [4, 7], then Iy o) = [4,7].

Task E11.2.10. Prove carefully the three assertions concerning numbers of connected
components in Example [[1.5.2

Task E11.2.11. In the notation of Example|11.2.5, prove that (I\ {t}, OI\{t}) has two
distinct connected components, and that (S*\ {f(¢)}, Osn\¢ f(t)}) is connected.

E11.3. For a deeper understanding

Task E11.3.1. Suppose that n belongs to N, and that n > 1. Suppose that x belongs
to R"™. Let Ogn\ () be the subspace topology on R™ \ {z} with respect to (R", On).
Prove that (R" \ {z}, Ogn\(4) is connected. You may wish to proceed as follows.

(1) Observe that R™\ {x} is the union of |—co, z[ x R" ™! |z, co[ x R* 1 R*~! x|z, oq],
and R"1 x ]—o0, z].

(2) By Task |[E10.3.5| and Proposition [10.7.1] observe each of these four sets is a con-
nected subset of (R™, Ogn).

(3) By Task [E2.3.1} deduce that each is a connected subset of (R" \ {z}, Ogn\ (41)-
(4) By Task|[E10.3.9, deduce that (R™ \ {x}, Ogn\{4)) is connected.

Task E11.3.2. Let O | be the subspace topology on [0, 1] with respect to (R, Og).

In Task you were asked to prove that the map
[07 1[ 4f’ St
given by t — ¢(t), where

R

Sl
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is the map of Task |E5.3.27] Prove that f is not a homeomorphism.

Task E11.3.3. Let (X,Ox) be a topological space. Suppose that zp and z; belong to

X. Prove that either F”Z”g(,ox) = F(I;(,Ox)’ or that I’&OX) N FO(C;QOX) is empty. You may

wish to proceed as follows.

(1) Suppose that zo and 21 belong to X, and that T'/9 N7l

(X,0x)" 7 (X,0x)
Proposition [11.3.7, we have that I'§ 0x) and I'7} are connected subsets of X

(X,Ox)

with respect t(.) Ox. By Task|[E10.3.9, deduce that F?)O(,OX) UF“&’OX) is a connected
subset of X with respect to Ox.

is not empty. By

(2) By Remark [11.3.6, we have that xg belongs to ng( Ox)’ Thus zg belongs to

X x L X X
;(c%’OX) .UI‘(;(’?)X). ]?i:xgl) and the definition of I‘()O(’OX), deduce that I‘()O(’OX) U
(X,0x) 1S asu set o (X,0x)"

is a subset of I'?Y

(3) Deduce that I'7} (X.0x)"

(X7OX)

(4) Arguing as in (2) and (3), demonstrate that F?)O(,OX) is a subset of Ff)lf,(?x)'

(5) Conclude that F?%,Ox) = F“&’OX).
Terminology E11.3.4. Let (X,Ox) be a topological space. Suppose that xg and 1

belong to X. Then P?)O(,Ox) and F"&’OX) are distinct if FEC)O(,OX) N Ff)l(’ox) is empty.

Remark E11.3.5. Let (X,Ox) be a topological space. By Remark [11.3.6] we have

that z belongs to I';. Thus X = J ¢y Iix0y)

Terminology E11.3.6. Let (X,Ox) be a topological space. Suppose that n belongs
to N. Then (X, Ox) has n distinct connected components if there is a set {x;}1<j<n of
elements of X such that the following hold.

(1) We have that X = U1§j§n Fggpx)-

(2) For every 1 < j < k < n, we have that F& 0y and e

(X,0x) aT€ distinct.

has exactly n elements (remember that all

Remark E11.3.7. By Task [E11.3.3] a topological space (X, Ox) has n distinct con-
nected components if the set F‘(U

XvoX) reX
equal elements of a set count as one!).
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Remark E11.3.8. In particular, there is at most one n such that (X, Ox) has n distinct
connected components.

Terminology E11.3.9. Let (X, Ox) be a topological space. Then (X, Ox) has finitely
many distinct connected components if there is an n € N such that (X, Ox) has n distinct
connected components.

Example E11.3.10. Suppose that (X, Ox) is connected. By Example [11.4.1] we then

have that Ff)oc,ox) = Ff;{po) for all 29 and z7 which belong to X. Thus (X, Ox) has

one distinct connected component.

Example E11.3.11. Let X = [1,2] U [4,7].

Let Ox be the subspace topology on X with respect to (R, Or). By[11.4.5, (X, Ox) has
two distinct connected components.

Example E11.3.12. Let Q be the set of rational numbers. Let Og be the subspace

topology on Q with respect to (R, Or). By Example|11.4.4] (Q, Og) has infinitely many
distinct connected components.

Task E11.3.13. Let (X, Ox) be a topological space. Suppose that = belongs to X.

Prove that FQ(CX Ox) is closed with respect to Ox. You may wish to proceed as follows.

(1) By Proposition 11.3.7|, we have that I'ly , ) is a connected subset of X with

respect to Ox. By Corollary [£10.3.4) deduce that clx o) (F‘(’“"X Ox)) is a connected

subset of X with respect to Ox.

(2) By Remark [11.3.6, we have that x belongs to I'x 0y)- By Remark deduce
that = belongs to cl(x 0 ) <F?X,OX))' By (1) and the definition of fo,oxy deduce

that clx o) <F:(”X70X)> is a subset of FfX’OX).

(3) By Remark|8.5.4] we have that FfX’OX) is a subset of cl(x o) (FQ(CX’OX)) Deduce

that cl(x 0y) <F:(EX,Ox)> is equal to I'y -

(4) By Proposition conclude that I'y , ) is closed in X with respect to Ox.
Task E11.3.14. Let (X, Ox) be a topological space. Suppose that (X, Ox) has finitely

many distinct connected components. Prove that every connected component belongs
to Ox. You may wish to proceed as follows.
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(1) Since (X, Ox) has finitely many distinct connected components, there is an n € N,
< . . — Zj Ly T
and a set {x;}1<j<pn, such that X = {J;;, I‘(j(,ox), and F(;(,OX) and F()ICCOX) are

distinct for every 1 < j < k < n.

(2) Suppose that x belongs to X. By (1) and Task [E11.3.3] observe that v og) =
F”(C)’“( 0x) for some 1 < k < n.

(3) By Task [E11.3.13] we have that F(I;(,Ox) is closed in X with respect to Ox for
every 1 < j € n such that j # k. By Remark [E1.3.2] deduce that X \ F‘Z”X Ox) =

Ut<j<nandjzk I‘?)j(’ox) is closed in X with respect to Ox.
(4) Conclude that Iy 0y belongs to Ox.

Corollary E11.3.15. Let (X,Ox) be a topological space. Suppose that X is finite.
Then every connected component of (X, Ox) belongs to Ox.

Proof. If X is finite, then X has only finitely many subsets. Thus (X, Ox) has only

finitely many distinct connected components. By Task |E11.3.14] we deduce that every
connected component of (X, Ox) belongs to Ox. O

Task E11.3.16. Let (X,Ox) and (Y, Oy) be topological spaces. Let
f
X —Y
be a continuous map. Suppose that x belongs to X. Prove that f (I‘g(”X Ox)) is a subset

of F{}(/%Y)' You may wish to proceed as follows.

(1) By Proposition [11.3.7, we have that Iy 0y 18 @ connected subset of X with

respect to Ox. By Task [£10.3.2 deduce that f (fo Ox)) is a connected subset of
Y with respect to Oy.

. By definition of /@) deduce that

(2) We have that f(z) belongs to f (F (V.0 )’

f (F(X’OX)> is a subset of I‘(Ypy).

ECX,OX))

Task E11.3.17. Let (X,Ox) and (Y, Oy) be topological spaces. Let
f
X —Y

be a homeomorphism. Suppose that x belongs to X. Let OF%X be the subspace

,0x)
topology on FQ(CX Ox) with respect to (X,Ox). Let Orf(;c) be the subspace topology

(Y,0y)

on F{i(’%y) with respect to (Y, Oy). Prove that (FfX,Ox)’O

f(2)
to <F(Y,Oy)7 (’)Ff(z)

(Y,0y)

Iz ) is homeomorphic
(X,0x)

). You may wish to proceed as follows.
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(1) By Task [E11.3.16{ we have that f (F?X,Ox) is a subset of F{)(/T()oy)- Since f is
continuous, deduce by Task and Task that the map

" i
Txox) — Liy.op)

given by y — f(y) is continuous.

(2) Since f is a homeomorphism, there is a continuous map

g
Y —X

such that go f = idx and fog = idy. By Task|E11.3.16, we have that ¢ <F{}(,x()gy)> is

a subset of 7Y@ Since go f =1idx, we have that g (f(x)) = 2. Thus g (T (2)
(X7OX) (Yon)
is a subset of I'? . Since g is continuous, deduce by Task [EE5.1.9|and Task [E5.1.9
that th (o)

at the map

(Y,0y) > 7 (X,0x)

given by y — ¢(y) is continuous.

(3) Observe that ¢’ o f/ = z‘dp?xo . and that f/og' = id s . Conclude that fis
X (Y,0y)
a homeomorphism.

Task E11.3.18. Let (X,Ox) and (Y, Oy) be homeomorphic topological spaces. Prove

that there is a bijection between the set I' x o) = {I‘fX Ox)} . and the set I'(y,0,) =
? S

{FZ(/Y:OY)}yey' You may wish to proceed as follows.
(1) Let

f
X——Y

be a homeomorphism. Suppose that xg and x; belong to X, and that T’ ?)0( ox) =

F(x)l(;ox). As a corollary of (3) of Task|[E11.3.17] we have that F{i(,ig)y) =f <F?§(,OX) ;
fl@) i = =
and that T/y'3) | = f (P&OX)). Since %% ) = I¥k o) We have that f (F& OX)) _

z fl@o) _ pflx1)
f (F()l(,ox)) Deduce that I‘(Yéy) = F(Y,(lﬂy)'
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E11.3. For a deeper understanding

(2) By Task [E7.3.2] there is a homeomorphism

g
Y —X

such that go f = idx and f o g = idy. Suppose that yo and y; belong to Y, and

that F?;,Oy) = FZ(J;,’Oy). Arguing as in (1), demonstrate that F?)(g(gx) = F‘E])(gl(%x).

(3) Let

/
I's —— Iy

be the map given by I'(y » ) — F{X(,I()Qy). By (1), this map is well-defined. Let

I'y

I'x

be the map given by F%’Y oy) F‘E] )(? )(9x)‘ By (2), this map is well-defined. Observe

that ¢/ o f' = idr O’ and that f'og¢ = idr<yoy),

Corollary E11.3.19. Let (X,Ox) and (Y, Oy) be homeomorphic topological spaces.
Suppose that there is an n € N such that (X, Ox) has n distinct connected components.
Then (Y, Oy) has n distinct connected components.

Proof. Follows immediately from Task [E11.3.18] and Remark [E11.3.7] O

Notation E11.3.20. Let J be a set. For every j which belongs to J, let X; be a set.
Let | | ey X be the corresponding coproduct, in the sense of Definition We denote

by
ij
Xj —— Ujes X5

the map given by z — (z, 7).

Task E11.3.21. Let J be a set. For every j which belongs to J, let (X;,Ox;) be a
topological space. Let (’)uje] x; be the set of subsets U of the coproduct |—|je 7 X such

that ij_l(U) belongs to Ox;. Prove that (l_ljeJ Xj,OquJXj) is a topological space.
You may wish to look back at the proof of Proposition [6.1.5

Terminology E11.3.22. We refer to OI_IjGJXj as the coproduct topology on |_|j€J Xj.
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Task E11.3.23. Let J be a set. For every j which belongs to J, let (Xj;,Ox;) be
a topological space. Let | |..; X; be equipped with the coproduct topology Ol_ljej X
Observe that

jed

ij
Xj |_|jeJ XJ'

is continuous, for every j which belongs to J.
Task E11.3.24. For every pair of integers j and n such that 0 < j <n, let (X}, Ox;) be

a topological space. How many connected components does <U0§j§n X, (’)U0<j<n X;
have? Prove that your guess holds!
E11.4. Exploration — bijections

Task E11.4.1. Suppose that a < b and ag < a1 < bg < b; belong to R. Prove that
there is a bijection

]a, b[ E— ]ao, a1[ U ]bo, bl[.

You may wish to proceed as follows.

(1) A homeomorphism is in particular a bijection. By Example we thus have
that there is a bijection

la,b] ——— Jag, a1].

By Task deduce that f is an injection.
(2) As observed in Remark the inclusion map

Jag, a1 [ ——> Jag, a1 [ U Jbo, b1

is an injection. By Proposition deduce that the map

foi

Ja, b] ——— Jao, a1[ U Jbo, b1

is an injection.

(3) By Example[7.3.10] and Task [E7.3.2] there is a bijection

R

la,b[.

By Task deduce that f is an injection.
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E11.4. Exploration — bijections

(4) The inclusion map

J

lag, a1[U]bo, b1 ] R

is an injection. By Proposition deduce that the map

goj
lag, a1[ U bg, b1| — Ja, b]

is an injection.

(5) By (2), (4), and Proposition conclude that there is a bijection

]CL, b[ E— ]a(), al[ U ]b[), bl[.

Task E11.4.2. Find a bijection

[1,2] U [4,7] L [1,5]

You may wish to proceed as follows.
(1) Let f be the identity on [1,2].
(2) Send 4 to 3, and send 7 to 5.
(3) Appealing to Task let f map |4, 7[ bijectively to ]2,3[U]3,5[.
Task E11.4.3. Find a bijection between I and S'. You may wish to proceed as follows.
(1) Map 0 to (0,1), and map 1 to (0,—1).
(2) By Task observe that there is a bijection from ]0,1[ to ]0,3[ U3, 1].

(3) Use the bijection of (2) and the map ¢ of Task [E5.3.27to map ]0, 1[ bijectively to
the union of

{($,y) e st ]y>0}

and

{(z,y) € ' |y <0}.

Task E11.4.4. Find a bijection between R and R”. You may wish to proceed as follows.
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(1) Observe that the map

R R™

given by x — (z,0,...,0) is an injection.

(2) By Example [7.3.10] and Task [E7.3.2] there is a bijection

By Task [E7.2.1] we have that g; is an injection. Let

R Jnn + 4]

be the map given by x — ¢1(z) +n — 1. Since g; is an injection, deduce that g, is
an injection.

(3) Deduce from (2) that the map

R’n

R

given by (x1,...,2n) — (g1(x1),...,gn(zy)) is an injection.
(4) By (1), (3), and Proposition deduce that there is a bijection between R and
R™.

E11.5. Exploration — totally disconnected topological spaces

Definition E11.5.1. A topological space (X, Ox) is totally disconnected if, for every x
which belongs to X, the connected component of z in (X, Ox) is {z}.

Example E11.5.2. Let X be a set. Let Ox be the discrete topology on X. By Example
11.4.2) we have that (X, Ox) is totally disconnected.

Example E11.5.3. Let Q be the set of rational numbers. Let Og be the subspace
topology on Q with respect to (R,Or). By Example [11.4.4 we have that (Q,Ogq) is
totally disconnected.

Example E11.5.4. By Task [E11.1.12} the Sorgenfrey line (R, Osqrg) is totally discon-
nected.
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E11.5. Exploration — totally disconnected topological spaces

Notation E11.5.5. Let Cantor be the subset of I given by

I U U ]3(71—1)—1—1 3(n—1)+2

3m ’ 3m
meNneN, 1<n<3m—1

Remark E11.5.6. In other words, Cantor is obtained as follows.

(1) Delete }%, %[ from 1.

s}
W= —
Wi —
—_

(2) Delete |§,2[ and |7, 5[ from 1.

W= —
wio —
o —
©loo —
—

jan)
=

(4) Continue this pattern of deletions of open intervals for all 3", where n belongs to
N.

Terminology E11.5.7. We refer to Cantor as the Cantor set.

Task E11.5.8. Let Ocantor be the subspace topology on Cantor with respect to (I, Oy).
Prove that (Cantor, Ocantor) is totally disconnected.
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12. Tuesday 11th February

12.1. Further examples of the number of distinct connected
components as an invariant

Example 12.1.1. Let K be the subset of R? given by the union of
{(0,y) eR? | 1<y <1}

and
{(x,y)€R2|$:yand—1§y§1}.

Let Ok be the subspace topology on K with respect to (R?, Op2).

Let (T,O7) be as in Example [11.5.2

Suppose that

y S

T

is a homeomorphism. Let = be the point (0,0) of K.
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12. Tuesday 11th February

Let Ok (s} be the subspace topology on K\ {z} with respect to (K, Ok). Then

(K\ {2}, Ok\ga)

has four distinct connected components.

Let O1\{f(«)} be the subspace topology on T\ {f(x)} with respect to (T,OT). Suppose
that f(z) is (0,1).

Then
(T\{F @)}, On\ip@py)

has three distinct connected components.

Suppose that f(z) = (2/,y). Suppose that 0 < |2/| < 1.

Then
(T\{f()}, O1\(f2)})
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12.1. Further examples of the number of distinct connected components as an invariant

has two distinct connected components.

Suppose that —1 <7/ < 1.

Then
(T\{f(@)}, O\ (5@)})

has two distinct connected components.

Suppose that f(z) is (—1,1), (1,1), or (0,—1).

Then
(T\{f (@)}, Or\(5)})

is connected.
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12. Tuesday 11th February

Thus
(T\{f (@)}, Or\(5)})

has at most three distinct connected components. Since f is a homeomorphism, we have,
by Task that there is a homeomorphism

KA {z} TA\{f (@)}

By Corollary since
(K\ {z}, Ok\(})

has four distinct connected components, we deduce that

(T\{f(®)},O1\(s@)})

has four distinct connected components. Thus we have a contradiction. We conclude
that there does not exist a homeomorphism

K

T.

In other words, (K, Ok) is not homeomorphic to (T, Or).

Remark 12.1.2. To fill in the details of the calculations of numbers of distinct connected
components in Example is the topic of Task ?77?.

Example 12.1.3. Let @ be the subset of R? given by the union of S and
{y) | -1<z<landz=y}.

Let Og be the subspace topology on @ with respect to (R?, Op2).

Let (1, O)) be as in Example [11.5.2
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Suppose that
f

Q——1

is a homeomorphism. Let x be the point ( 12, %) of @. Let y be the point (—\%, —%)
of @.

S

Let Og\ (2,4} be the subspace topology on @ \ {x,y} with respect to (@, 0g). Then

@\ {z,9}, Op\ (2})

has five distinct connected components.

Suppose that neither f(z) nor f(y) is (0,0) or (0,1).

Then
(N A{f@), FW)} Ongr).rwt)

has three distinct connected components.
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Suppose that one of f(z) or f(y) is (0,0) or (0,1), and that the other is neither (0,0)
nor (0,1).

Then
(N A{f@), FW)} Ongr).rw)})

has two distinct connected components.

Suppose that one of f(x) or f(y) is (0,0), and that the other is (0, 1).
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12.1. Further examples of the number of distinct connected components as an invariant

Then
(N A{f@), FW)} Ongrw).rwt)

is connected.

Thus
(N A @), FW)} Onr @) fw)})

has at most three distinct connected components. Since f is a homeomorphism, we have
by Task that there is a homeomorphism

D\ {z,y} —— I\ {f (@), f(v)}.

By Corollary [E11.3.19] since
(® \ {ZL’, y}? O@\{z,y})
has five distinct connected components, we deduce that

(N A{F@), FW)} Ongrw).rwt)

has five distinct connected components. Thus we have a contradiction. We conclude
that there does not exist a homeomorphism

@ ——1I

In other words, (@, Og) is not homeomorphic to (I, Oy).

Remark 12.1.4. We cannot distinguish (@, Og) from (I, O;) by removing just one point
from each topological space and counting the resulting numbers of distinct connected
components. To check that you understand why is the topic of Task [E12.2.2

Remark 12.1.5. To fill in the details of the calculations of numbers of distinct connected
components in Example [12.1.3]is the topic of Task [£12.2.3
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12.2. Can we take our technique further?

Remark 12.2.1. In all of our examples of distinguishing a pair of topological spaces by
means of connectedness, at least one of the two has been ‘one dimensional’: built out of
lines. Can our technique distinguish between ‘higher dimensional’ topological spaces?

Remark 12.2.2. Let us try to distinguish (72, Op2) from (52, Og2). Let X be a sub-
set of T? such that (X,Ox) is homeomorphic to (S, Og1), where Ox is the subspace
topology on X with respect to (T2, Op2).

20

For the X depicted above, we have that T2 \ X is as depicted below.

C >
Let Op2\ x be the subspace topology on T2\ X with respect to (72, Op2). We have that
(T?\ X, Or2\ x) is homeomorphic to a cylinder.

In particular, we have that (72 \ X, Or2\ x) is connected. Let Y be a subset of S? such
that (Y, Oy) is homeomorphic to (S, Og1), where Oy is the subspace topology on Y

with respect to (5%, 0g2).

For any such Y, it seems intuitively that S? \ Y has exactly two distinct connected
components. In the example depicted above, we obtain the open disc enclosed by the
circle, and the open subset of S? which remains after cutting out the closed disc enclosed
by the circle.

L
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12.2. Can we take our technique further?

s
&
N

Then S2\ 'Y consists of the northern hemisphere and the southern hemisphere.

L

Suppose that Y is the equator.

a
\_

52

Suppose that

T2

is a homeomorphism. Let (X, Ox) be as above, with the property that (T2 \ X, Or2\x)
is connected. Let S\ f(X) be equipped with the subspace topology Og2\ (x) With
respect to (52, Og2). Since f is a homeomorphism, we have, by Task [E7.1.20] that there

is a homeomorphism

T2\ {X} —— §2\ f(X).

By Corollary we deduce that (52 \ f(X),(’)SQ\f(X)) is connected. Let Oy x) be
the subspace topology on f(X) with respect to (5%, Og2).

Since f is a homeomorphism, we have, by Task 77, that ( f(X),0 ( X)) is homeomor-
phic to (S', Og1). If our intuition is correct, we deduce that (S%\ f(X), OSQ\f(X)) has
exactly two distinct connected components. Thus we have a contradiction. We deduce
that there does not exist a homeomorphism

T2 S2.

In other words, (172, Or2) and (52, Og2) are not homeomorphic.
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Remark 12.2.3. This argument does prove that (72, Op2) is not homeomorphic to
(S%,042). However, we have to be very carefull We must rigorously prove that (S? \
Y, (’)Sz\y) has exactly two distinct connected components.

This is not at all an easy matter! Homeomorphism is a very flexible notion, and Y
could be very wild. How do we know that the two examples we considered in Remark
12.2.2] are representative of all possible Y7 We need to be sure that the requirement
that we have a homeomorphism, as opposed to only a continuous surjection, excludes
examples which are as wild as the Peano curve of Task 77.

The fact that (S2?\Y, Og2\y) has exactly two distinct connected components, for any
(Y, Oy) which is homeomorphic to (S*, Og1), is known as the Jordan curve theorem.

12.3. Locally connected topological spaces

Definition 12.3.1. A topological space (X,Ox) is locally connected if, for every x
which belongs to X, and every neighbourhood U of x in X with respect to Ox, there is
a neighbourhood W of x in X with respect to Ox which is both a connected subset of
X with respect to Ox, and a subset of U.

Example 12.3.2. Suppose that x belongs to R. Let U be a neighbourhood of z in
R with respect to Or. By definition of Og, there is an open interval |a, b[ to which x
belongs, and which is a subset of U.

By Task [E10.3.5, we have that |a, b[ is a connected subset of R with respect to Og. We
conclude that (R, Og) is locally connected.

Example 12.3.3. Let X = [1,2] U [4,7].

Let Ox denote the subspace topology on X with respect to (R, Or). Suppose that x
belongs to [4,7]. Let U be a neighbourhood of = in X with respect to Ox.
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U
1 F——
\ \ \ \ \
1 2 4 T 7

By definition of Ox and Og, there is an open interval ]a, b[, to which x belongs, such
that X N]a,b| is a subset of U.

o
H T
L foa o T

The following hold.

(1) By Task [E1.3.5, we have that [4,7] N ]a,b] is an interval. By Task [E10.3.5 we

deduce that [4,7] N]a, b[ is a connected subset of R with respect to Og.

(2) By definition of Ox, we have that X N]a, b[ belongs to Ox. As was demonstrated
in Example we also have that [4, 7] belongs to Ox. Thus

[4,7] N]a,b] = [4,7] N (X N]a,b])
belongs to Ox.

By Task we deduce from (1) and (2) that [4,7] N]a,b] is a connected subset of
X with respect to Ox.

In addition, we have that x belongs to [4, 7]N]a, b[. By (2), we thus have that [4, 7]N]a, b[
is a neighbourhood of z in X with respect to Ox. Moreover, since [4,7] is a subset of
X, and since X N]a, b| is a subset of U.

Suppose now that = belongs to [1,2]. Let U be a neighbourhood of z in X with respect
to Ox.
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By an analogous argument to that which we gave in the case that x belongs to [4, 7],
there is an open interval |a’, b'[ such that [1,2]N]a’, V'] is a neighbourhood of x in X with
respect to Oy, is a connected subset of X with respect to Oy, and is a subset of U.

H
H i
xx:x
1 = 2

A=
4 -

To fill in the details is the topic of Task [E12.2.50 We conclude that (X, Ox) is locally
connected.

Remark 12.3.4. The ingredients of this argument can be organised into a more general
method for proving that a topological space is locally connected. By Task [E2.3.1] and
Task both [1,2] and [4,7] are connected subsets of X with respect to Ox.
Moreover, as was demonstrated in Example both [1,2] and [4,7] belong to Ox.
By Task we conclude that (X, Ox) is locally connected.

Example 12.3.5. By Example [12.3.2] we have that (R, Og) is locally connected. By
Task [E12.1.7, we deduce that (R?, Oge) is locally connected.

Example 12.3.6. By Task [£12.3.9) we have that (I, Oy) is locally connected.

e
I I
0 1

By Task [E12.1.7, we deduce that (12, 0;2) is locally connected.

Example 12.3.7. By Example [12.3.6, we have that (I, O;2) is locally connected. By
Task [E12.3.10} we deduce that (T2, Op2) is locally connected.
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Remark 12.3.8. By a similar argument, (M?2,0,;2) and (K2, Og2) are locally con-
nected. To check that you understand this is the topic of Task [E12.2.6

Example 12.3.9. By Example [12.3.6, we have that (12, O;2) is locally connected. By
Task there is a homeomorphism

12— D2

By Task [E12.1.8] we deduce that (D?, Op2) is connected.

Example 12.3.10. By Example [12.3.9] we have that (D?,Op2) is locally connected.
By Task [E12.3.10, we deduce that (52, Og2) is locally connected.

S

Example 12.3.11. Let Og be the subspace topology on Q with respect to (R, Og).

Suppose that ¢ belongs to Q. By Example [11.4.4, we have that F‘(IQ 0g) is {¢}. In other

words, {q} is the only connected subset of Q to which ¢ belongs. However, the set {q}
does not belong to Og. To check this is the topic of Task Thus there is no
neighbourhood of ¢ in Q with respect to Og which is a connected subset of Q with
respect to Og. We conclude that (Q, Og) is not locally connected.

Remark 12.3.12. We could also argue as follows. By Example we have that
r? is {¢}. The set {q} does not belong to Og, as you are asked to check in Task

(Q,O)
[£12.2.4] By Corollary [E12.3.4] we deduce that (Q, Og) is not locally connected.

12.4. A topological space which is connected but not locally
connected

Example 12.4.1. Let A be the subset of R? given by the union of the sets

U {(59) lve b

neN
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and

neN
Gyt (G (1.1)
o) (o) (1.0) (1,0)

Let X be the closure of A in R? with respect to Og2. By Task [E8.1.7, we have that X
is the union of A and the line {0} x [0, 1].

(0,00 (L.0) (L.0) (1,0) (1,0)

Let Ox be the subspace topology on X with respect to (R?, Og2). By Task[E10.1.6] we
have that (X, Ox) is connected.
Let U be the neighbourhood of (O, %) in X with respect to Ox given by

X0 (-talx]33D-

Let Oy be the subspace topology on U with respect to (X, Ox).

,,,,,,,,,,,,,,,,

(0,0) (,0) (1,0) (1.0 (1:0)

Suppose that (z,y) belongs to U. Let B be a subset of U to which both (0, %) and (z,y)
belong. Let Op be the subspace topology on B with respect to (U, Oy). Suppose that
where n belongs to N.

1
ZE—W,
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o

Let ¢ be a real number with the property that 2,1% <c< % Then B is the union of],
for example,

BN (]-1,¢[ x|

E[eY]

)

P

and

B (Je,2[x]5.50)

and this union is disjoint. The only significance in the choice of —1 and 2 is that —1 < 0,
and 2 > 1. Both

BN (]-1,¢[ x |

[ [S]

9

-

and

BN (Je,2[x ] 5.2 ()

belong to Op. Thus B is not a connected subset of U with respect to Op.

o

Suppose instead that 2"% <z < 2"%’ where n belongs to N.

o

Let ¢ be a real number with the property that 2,1% <c< 2"% Then B is the union of,
for example,
BN (]-1,c[x]1,2])

LN [SN]

and
BN (Je.2[x |1 3[)

and this union is disjoint. Moreover, both

BN (]-1,¢[ x|

)

N[O

)

PN

and
BN (Je.2[x ], 3])

belong to Op. Thus B is not a connected subset of U with respect to Oy .
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o

We have now demonstrated that if z > 0, then there is no connected subset of U
with respect to Oy to which both ( 3) and (z,y) belong. Thus F(([O] %9) ) is a subset of
{0} x |1, 2[. We have that {0} x |1, 2] is a connected subset of U with respect to Op.
To check this is the topic of Task [E12.2.7, We conclude that F( ) is {0} x |1, 2].

Suppose that {0} x ] Y ib [ belongs to OU By Task and the definition of Og2,
there are real numbers ag < 0 < aq and 1 1<bo < 2 < b1 < 4 such that

U N (Jao, ax[ x Jbo, b1 )

is a subset of {0} x H,%[. Let n be a natural number such that 0 < 2% < aj. Then
(QL, 1) belongs to
Un (]ao,al[ X ]bo,bl[) .

Since (5, %) does not belong to {0} x |1, 3 [, we have a contradiction. We conclude that
{0} x |1, 3[ does not belong to Op.
(0.3)

Putting everything together, we have demonstrated that I‘(Uo ) does not belong to
Oy. By Task [E12.3.3, we conclude that (X, Ox) is not locally connected.

Remark 12.4.2. The topological space (X,Ox) is a variant of a topological space
known as the topologist’s sine curve.

Remark 12.4.3. We could have proven that (X, Ox) is not locally connected by working
with any (0,y) such that 0 <y < 1 in place of (0, 1). To check that you understand this

is the topic of Task [£12.2.8

Remark 12.4.4. In a nutshell, the reason that (X, Ox) is not locally connected is that,
for any particular (x,y) which belongs to X with z > 0, there is a ‘gap’ between (x, y)
and the y-axis, which is detected when we explore connectedness ‘locally’ around (z,y).

When we work ‘globally’, namely when we consider (X, Ox) as a whole, there is no
‘gap’ between the y-axis and the rest of X, because the intervals zig-zag infinitely closely
towards the y-axis.
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E12.1. Exam questions

Task E12.1.1 (Continuation Exam, August 2013). Let X be the subset of R? depicted
below.

Let Ox be the subspace topology on X with respect to (R%, Op2). Let Y be the subset
of R? depicted below.

Let Oy be the subspace topology on Y with respect to (R?, Og2). Is (X,Ox) homeo-
morphic to (Y, Oy)?

Task E12.1.2. View the letters B, C, D, E, F, G, H as subsets of R2. Let each be
equipped with the subspace topology with respect to (R%, Og2). Which of the letters are
homeomorphic, and which are not?

Task E12.1.3. View each of the following shapes as a subset of R?. Each consists of
intervals glued together. In particular, all of the shapes have no ‘inside’.
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AN

Let each shape be equipped with its subspace topology with respect to (R2, Og2). Prove
that no two of the shapes are homeomorphic.

Task E12.1.4. Let X be the union of D? and [3,4] x [2, 3].

Let Ox be the subspace topology on X with respect to (R?, Og2). Prove that (X, Ox)
is locally connected. You may wish to appeal to Task [112.3.8

Task E12.1.5. Let X be a set. Let Ox be the discrete topology on X. Prove that
(X, Ox) is locally connected.

Task E12.1.6. Let X be the subset of R given by the union of {0} and {1 | n € N}.
Let Ox be the subspace topology on X with respect to (R, Og). Prove that (X, Ox) is
not locally connected.

* aneee o o °

[es}
N~ o
—_

Task E12.1.7. Let (X, Ox) and (Y, Oy) be locally connected topological spaces. Prove
that (X xY,Oxx«y) is locally connected.
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Task E12.1.8. Let (X,Ox) and (Y, Oy) be topological spaces. Suppose that (X, Ox)
is locally connected. Let

¥ f

Y

be a homeomorphism. Prove that (Y, Oy) is locally connected.

E12.2. In the lecture notes

Task E12.2.1. Prove carefully the assertions concerning numbers of distinct connected
components in Example [[2.1.1

Task E12.2.2. How many distinct connected components can we obtain by removing
one point from O? Explain why your answer means that we cannot distinguish (@, Og)
from (I, O) by removing just one point from each topological space, and counting the
resultings numbers of distinct connected components.

Task E12.2.3. Prove carefully the assertions concerning numbers of distinct connected

components in Example [12.1.3

Task E12.2.4. Let Og be the subspace topology on Q with respect to (R, Og). Suppose
that ¢ belongs to Q. Prove that {q} does not belong to Og.

Task E12.2.5. Let (X, Ox) be as in Example Suppose that = belongs to [1,2].
Let U be a neighbourhood of x in X with respect to Ox. Prove that there is an open
interval ]a’, [ such that [1,2]N]a’, V[ is a neighbourhood of = in X with respect to Ox,
is a connected subset of X with respect to Oy, and is a subset of U.

Task E12.2.6. Prove that (M2, O,;2) is locally connected.

Task E12.2.7. Let (U,Oy) be as in Example [12.4.1] Prove that {0} x |§,3[ is a
connected subset of U with respect to Opy. You may wish to proceed as follows.

(1) Let (9{0} |1 8] be the subspace topology on {0} x ] 1 [ with respect to (R2, Opo).
Let Oy1 31 b
Jail
3 . . 1 3 .
({O} ]f 2 O{O}XH’%O is homeomorphic to <]Z7Z[7OH,%[>' You may wish to
look back at your argument for Task

13
1
e the subspace topology on ] }L, 1 [ with respect to (R, Or). Prove that
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(2) Appeal to Task [E2.3.1} and to Corollary [10.5.2

Task E12.2.8. Let (X, Ox) be as in Example [12.4.1} Prove that (X, Ox) is not locally

connected by working with (0,1) rather than (0, %) Can you furthermore see how to
adapt the argument of Example [12.4.1]to any (0,y) such that 0 <y < 17?7

Task E12.2.9. Let X be the subset of R? given by the union of the sets {0,1} x [0, %],

I x {0},
Yl e}

go{(x,Z"x)\xE [2711“21””

and

where n is an integer.

(0,1) » « o e . (1,1
(0,3) ¢ ¢ 3 (%"%) . (13)
(an) ° ° (130)

Let Ox be the subspace topology on X with respect to (R%,Op2). Check that you
understand Example [12.4.1| by proving that (X, Ox) is not locally connected.

Remark E12.2.10. The topological space (X, Ox) is a variant of a topological space
known as the Warsaw circle.
E12.3. For a deeper understanding
Task E12.3.1. Let X be the subset of R given by
10,1fUu{2} U]3,4[U{5}U]6,T[U {8} -- .
In other words, X is given by

J13n—3,3n —2[u{3n — 1}.
neN

272



E12.3. For a deeper understanding

Let Ox be the subspace topology on X with respect to (R, Og).

Let Y be the subset of R given by
10,1]U3,4[U{5} U6, T[U{8}U---.

In other words, Y is given by

10,1] U (U]Sn,3n+1[u{3n+2}>.

neN

Let Oy be the subspace topology on Oy with respect to (R, Og).

Prove that there is a continuous bijection

f
X Y
and a continuous bijection
Y i} X,

but that (X, Ox) is not homeomorphic to (Y, Oy). You may wish to proceed to as
follows.

(1) Let

be given by

)z ifz#2,
f(x){1 if 2 = 2.

Observe that f is a bijection. By Task [E5.3.14] and Task [E5.3.23[ (1), observe that

f is continuous.
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(2) Let

be given by
z if x €10,1],
glz) = &2 ifxe€]3,4],

xz — 3 otherwise.

Observe that g is a bijection. By Task [E5.3.14] and Task [E5.3.23| (1), observe that

g is continuous.

(3) Suppose that y belongs to ]0, 1]. Demonstrate that I'y is ]0, 1].

(4) Suppose that (X, Ox) and (Y, Oy) are homeomorphic. Let Oy ;) be the subspace
topology on 0, 1] with respect to (Y,Oy). By Task deduce from (3)
that there is an z which belongs to X with the property that (]0, 1] ,(’)1071}) is
homeomorphic to (I'y, Or, ), where Or, is the subspace topology on I';, with respect
to (X, Ox).

(5) Suppose that n belongs to N. Demonstrate that if x belongs to |3n — 3,3n — 2],
then I'; is |3n — 3,3n — 2[. Demonstrate that if x is 3n — 1, then I'; is {3n — 1}.

(6) Let Oy3,,—33n—2[ be the subspace topology on |3n — 3,3n — 2[ with respect to

(X,Ox). By Task [E2.3.1{and Task [E11.1.3{we have that (]0,1], O}g 1) is not home-
[

omorphic to (]3n — 3,3n — 2], Oj3n—33n-2[)-

(7) Let Og3,—1y be the subspace topology on {3n — 1} with respect to (X, Ox). Ob-
serve that (]0, 1] ,(9]071]) is not homeomorphic to ({Bn — 1}70{371—1}), since there
cannot be a bijection between a set with one element and ]0, 1]. To check that you
understand this was the topic of Task [E7.2.2]

(8) Observe that (6) and (7) together contradict (4) and (5). Conclude that (X, Ox)
and (Y, Oy) are not homeomorphic.

Task E12.3.2. Let (X,0x) be a topological space. Let U be a subset of X which
belongs to Ox. Let Oy be the subspace topology on U with respect to (X,Ox). Let
A be a connected subset of X with respect to Ox. Suppose that A is a subset of U.
Prove that A is a connected subset of U with respect to Op. You may wish to proceed
as follows.

(1) Let Uy and Uy be subsets of A such that A = Uy U Uy, and such that both Uy and
Ui belong to Op. By Task [E2.3.3| (1), observe that Uy and U; belong to Ox.

(2) Since A is a connected subset of X with respect to Ox, deduce that at least one
of Uy and Uj is empty. Conclude that A is a connected subset of U with respect to
Oy.
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Task E12.3.3. Let (X,0x) be a topological space. Prove that (X,Ox) is locally
connected if and only if, for every subset U of X which belongs to Ox, we have that
Ff(”U’OU) belongs to Ox, where Oy is the subspace topology on U with respect to (X, Ox).
You may wish to proceed as follows.

(1) Suppose that (X, Ox) is locally connected. Let U be a subset of X which belongs
to Ox. Let Oy be the subspace topology on U with respect to (X, Ox). Suppose
that = belongs to U. Since (X, Ox) is locally connected, there is a neighbourhood
W of x in X with respect to Ox such that W is a connected subset of X with
respect to Ox, and such that W is a subset of U. By Task [E12.3.2] we have that
W is a connected subset of U with respect to Opy. Deduce that W is a subset of

F%U,OU)'

(2) By Task [E8.3.1] deduce that Iy 0, belongs to Ox.

(3) Conversely, suppose that, for every subset U of X which belongs to Ox, we
have that F:(EUOU belongs to Ox. Suppose that x belongs to X. Let U, be a

neighbourhood of z in X with respect to Ox. Then F%’Uz Ou.) is a connected subset

T

of U, with respect to Op,. By assumption, we have that F(UI Ou.) belongs to Ox.
Conclude that (X, Ox) is locally connected.

Corollary E12.3.4. Let (X,0Ox) be a locally connected topological space. Suppose
that x belongs to (X, Ox). Then Iy 0y belongs to Ox.

Proof. Follows immediately from Task [£12.3.3] since X belongs to Ox. O

Task E12.3.5. Let (X, Ox) be a locally connected topological space. Let U be a subset
of X which belongs to Ox. Let Oy be the subspace topology on U with respect to
(X,0x). Prove that (U,Op) is locally connected. You may wish to appeal to Task

[£12.3.3] Task [E2.3.3| (1), and Task [E2.3.1

Task E12.3.6. Prove that a topological space (X, Ox) is both totally disconnected and
locally connected if and only if Ox is the discrete topology on X. You may wish to

appeal to Task [E12.1.5] and to Corollary [E12.3.4

Task E12.3.7. Let (X,Ox) be a topological space. Suppose that X is finite. Prove
that (X,Ox) is locally connected. You may wish to appeal to Task [E11.3.15 and to
Task [[212.3.3

Task E12.3.8. Let (X,Ox) be a topological space. Let Xy and X; be subsets of X
which belong to Ox. Suppose that X = XU X;. Let Ox, be the subspace topology on
Xo with respect to (X, Ox), and let Ox, be the subspace topology on X; with respect
to (X, Ox). Prove that (X, Ox) is locally connected if and only if both (X, Ox,) and
(X1, Ox,) are locally connected. You may wish to proceed as follows.

(1) Suppose that (X, Ox) is locally connected. By Task|[E12.3.5| deduce that (X, Ox,)
and (X1, Ox,) are locally connected.
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(2) Suppose that (Xo,Ox,) and (X;,Ox,) are locally connected. Suppose that x
belongs to X. Since X = Xy U X1, observe that either x belongs to Xy or that x
belongs to X;.

(3) Suppose that x belongs to Xy. Let U be a neighbourhood of x in X with respect
to Ox. Then Xy NU is a neighbourhood of z in Xy with respect to Ox,. Since
(X0, Ox,) is locally connected, deduce that there is a neighbourhood U, of = in X
with respect to Ox, such that U, is both a connected subset of Xy with respect to
Ox,, and a subset of XoNU.

(4) Since XoNU is a subset of U, observe that U, is a subset of U.

(5) By Task [E2.3.3| (1), since X belongs to Ox and U, is a neighbourhood of = in
Xo with respect to Ox,, deduce that U, is a neighbourhood of  in X with respect
to Ox.

(6) By Task[E2.3.1] since U, is a connected subset of Xy with respect to Ox,, deduce
that U, is a connected subset of X with respect to Ox.

(7) By an analogous argument, observe that if  belongs to X7, then there is a neigh-
bourhood U, of x in X with respect to Ox which is both a connected subset of X
with respect to Ox, and a subset of U.

(8) Conclude from (4) — (7) that (X, Ox) is locally connected.

Task E12.3.9. Let X be an interval. Let Ox be the subspace topology on X with
respect to (R, Ogr). Prove that (X, Ox) is locally connected. You may wish to appeal
to Task [1.3.5] and to Task [[210.3.9)

Task E12.3.10. Let (X,Ox) be a locally connected topological space. Let ~ be an
equivalence relation on X. Prove that (X/~,Ox/.) is locally connected. You may wish
to proceed as follows.

(1) Suppose that [x] belongs to X/~. Let U be a neighbourhood of [z] in X/~ with
respect to Ox/~. Let

X L, X /N
be the quotient map. By Remark we have that 7 is continuous. Thus, observe

that 7=1(U) belongs to Ox.

(2) Let Or-1(1) be the subspace topology on 7~ 1(U) with respect to (X,0Ox). By
Corolllary observe that

xT

F(Wfl(U),orl(U))

is a neighbourhood of x in X with respect Oy, and is a connected subset of X with
respect to Ox.
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(3) Since

T

(W*l(U),wal(U»

is a connected subset of X with respect to Ox, deduce, by Task [[110.3.2] that

™ (Fzﬂ—l(U),Oﬂl(m))

is a connected subset of X/~ with respect to Ox/...

(4) Let Oy be the subspace topology on U with respect to (X/N, (’)X/N). By definition

of F%ﬂ Ou)’ deduce that

T (Faéﬁl(U),(')ﬂ1<U))>

is a subset of F@OU).

(5) Deduce that

is a subset of 7! <FE§OU)>.

(6) We have that

is a subset of

Deduce that
is a subset of

(7) As observed in (2), we have that

F"zwfl(U),Oﬂ__uU))

is a neighbourhood of z in X with respect to Ox. By Task deduce that
—1 (ple
T (Fw,ou))

belongs to Ox. Thus I‘%’OU) belongs to Ox/...
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(8) By Task[E12.3.3, conclude that (X/~,Ox/.) is locally connected.

Task E12.3.11. Let Oy be the discrete topology on N. Let (X, Ox) be the topological
space of Task [E12.1.6] Let

N S

X

be the map given by

L ifn>1.

n

{o ifn=1,
n +—

Prove that f is a continuous surjection. You may wish to appeal to Task

Task E12.3.12. Let O)g ;) be the subspace topology on ]0, 1] with respect to (R, Og).

Let (X, Ox) be the Warsaw circle. Construct a continuous surjection

10,1] —— X.

You may wish to appeal to (2) of Task [E5.3.23

Remark E12.3.13. Let Oy be the discrete topology on N. By Task we have
that N is locally connected. By Task the topological space (X, Ox) of Task
is not locally connected. Thus Task demonstrates that an analogue
of Proposition does not hold for locally connected topological spaces. It is for
this reason that the proof needed for Task is more involved than the proof of
Corollary

Let O)g 1) be the subspace topology on |0, 1] with respect to (R, Og). By Task [12.3.9
we have that (]0, 1] ,0}071}) is locally connected. By Task the Warsaw circle
is not locally connected. Thus Task gives a a second demonstration that an
analogue of Proposition does not hold for locally connected topological spaces.
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13.1. Hausdorff topological spaces

Definition 13.1.1. A topological space (X, Ox) is Hausdorff if, for all zy and x1 which
belong to X such that xg # x1, there is a neighbourhood Uy of zy in X with respect to
Ox, and a neighbourhood U; of z1 in X with respect to Ox, such that UyNU; is empty.

13.2. Examples and non-examples of Hausdorff topological
spaces

Example 13.2.1. Suppose that x¢ and x1 belong to R, and that x¢ # x1. Relabelling
xo and x1 if necessary, we may assume that xo < x;.

To T

Lety be a real number such that 2o < y < z;. The following hold.

(1) We have that z¢ belongs to |—o0, y|.
(2) We have that x; belongs to |y, ool.

(3) We have that |—oo, y[ N ]y, o[ is empty.
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| | |
Zo Yy X1

Both |—o0, y[ and |y, oo belong to Or. To verify this is the topic of Task [E13.2.1l We
conclude that (R, Or) is Hausdorff.

Example 13.2.2. Let X be a set. Let Oi)’}disc be the indiscrete topology on X. Suppose
that zg and z1 belong to X, and that x¢ # x1. The only neighbourhood of xy in X with
respect to Oi)?disc is X, and x; belongs to X. Thus there is no neighbourhood of xg in
X with respect to O}’}disc which does not contain z;. In particular, (X, (’)i)’}disc) is not
Hausdorff.

Example 13.2.3. Let X be a set. Let Og'(isc be the discrete topology on X. Suppose
that x¢ and x1 belong to X, and that xg # x1. The following hold.

(1) We have that {zo} belongs to O%sc.
(2) We have that {z1} belongs to O%sc.
(3) We have that {zo} N {z1} is empty.
We conclude that (X, 04¢) is Hausdorff.
Example 13.2.4. Let X be the set {a,b,c}. Let Ox be the topology on X given by
{0,{a},{a,b},{a,c} X}.

Every neighbourhood of b in X with respect to Ox also contains ¢. Thus (X, Ox) is not
Hausdorff.

Example 13.2.5. Let X be the set {a,b,c}. Let Ox be the topology on X given by

{0,{a},{c},{a,b},{a,c}, X}

Every neighbourhood of b in X with respect to Ox also contains a. Thus (X, Ox) is
not Hausdorff.

Remark 13.2.6. Let (X, Ox) be a topological space. Suppose that X is finite, or more
generally that Ox is finite. Then (X, Ox) is Hausdorff if and only if Ox is the discrete

topology. This is Corollary [EI3.3.7

Example 13.2.7. Let O be the topology on R? given by
{U xR | U belongs to Or} .

To verify that O defines a topology is Task [E13.2.2] Suppose that xg and x; belong to
R, and that xg # x1. Let W be a neighbourhood of (0, z() in X with respect to O.
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By definition of O, there is a neighbourhood U of 0 in R with respect to Ogr such that
W = U x R. By definition of Og, there is an open interval |a,b[ with a < 0 < b such
that ]a, b[ is a subset of U. Thus |a,b[ x R is a subset of W.

We have that (0,x1) belongs to Ja,b[ x R. Thus (0, z;) belongs to W.
We have demonstrated that every neighbourhood of (0, xq) in R? with respect to O
contains (0,21). We conclude that (R2, O) is not Hausdorff.

13.3. Canonical methods to prove that a topological space is
Hausdorff

Proposition 13.3.1. Let (X, Ox) be a Hausdorff topological space. Let A be a subset
of X. Let O4 be the subspace topology on A with respect to (X, Ox). Then (A4,0,4) is
Hausdorff.

Proof. Suppose that ag and a; belong to A, and that ag # ay. Since (X, Ox) is Haus-
dorff, there is a neighbourhood Uy of ag in X with respect to Ox, and a neighbourhood
Uy of a1 in X with respect to Ox, such that Uy N U; is empty. The following hold.

(1) By definition of O4, we have that A N Uy belongs to O4. Thus AN U is a
neighbourhood of ag in A with respect to O4.

(2) By definition of O4, we have that A N U; belongs to O4. Thus ANU; is a
neighbourhood of a1 in A with respect to O 4.
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(3) We have that (AN Upy) N (ANU;) is a subset of Uy N U;. Since Uy N Uj is empty,
we deduce that (AN Up) N (ANU;p) is empty.

We conclude that (A, O4) is Hausdorff.
O

Example 13.3.2. By Example [13.2.1) we have that (R, Or) is Hausdorff. By Proposi-
tion |13.3.1] we deduce that (I, Or) is Hausdorff.

Proposition 13.3.3. Let (X,Ox) and (Y, Oy) be Hausdorff topological spaces. Then
(X xY,Oxxy) is Hausdorft.

Proof. Suppose that (zg,y0) and (z1,y1) belong to X x Y, and that (xg,yo) # (z1,41)-
Then either zg # x1 or yo # y1, or both zg # x1 and yg # y1.

Suppose that zo # x1. Since (X, Ox) is Hausdorff, there is a neighbourhood Us® of
To in X with respect to Oy, and a neighbourhood U;X of z1 in X with respect to Ox,
such that U(f( N U7 is empty. The following hold.

(1) We have that UOX x Y belongs to Oxxy. Thus U(f< x Y is a neighbourhood of
(z0,y0) in X x Y with respect to Oxxy.

(2) We have that U{* x Y belongs to Oxxy. Thus U;¥ x Y is a neighbourhood of
(x1,y1) in X x Y with respect to Oxxy.

(3) We have that (U x Y)N(U{ xY) = (U NU{) x Y. Since Us* NU;Y is empty,
we deduce that (Us x V)N (U¥ x Y) is empty.

Suppose instead that yg # y1. By an analogous argument, there is a neighbourhood Ugf
of yg in Y with respect to Oy, and a neighbourhood Uly of y1 in Y with respect to Oy,
such that the following hold.

(1 bis) We have that X x U} is a neighbourhood of (z¢,yo) in X x Y with respect to
Oxxy-

(2 bis) We have that X x UY is a neighbourhood of (x1,y;) in X x Y with respect to
Oxxy-

(3 bis) We have that (X x UY) N (X x UY) is empty.
We conclude that (X x Y, Oxxy) is Hausdorff. O

Example 13.3.4. By Example [13.2.1} we have that (R, Ogr) is Hausdorff. By Proposi-
tion [13.3.3] we deduce that (R™, Orn) is Hausdorff, for any n > 1.

Example 13.3.5. By Example[13.3.2] we have that (I, O;) is Hausdorff. By Proposition
we deduce that (I2,0;2) is Hausdorff.

Alternatively, by Example we have that (R?, Ope2) is Hausdorff. We can deduce
from this that (12, O2) is Hausdorff by Proposition

282



13.3. Canonical methods to prove that a topological space is Hausdorff

Example 13.3.6. By Example [13.3.4 we have that (R?, Og2) is Hausdorff. By Propo-
sition [13.3.1} we deduce that (S!, Og1) is Hausdorff.

Proposition 13.3.7. Let (X,0Ox) and (Y,Oy) be topological spaces. Suppose that
(X, Ox) is Hausdorff. Let

¥ S

Y

be a bijection. Suppose that f is open, in the sense of Definition [E7.1.15, Then (Y, Oy)
is Hausdorff.

Proof. Since f is a bijection, there is a map
g
Yy —X

such that go f = idx and f o g = idy. Suppose that yg and y; belong to Y, and that
Yo # y1. Since yo # y1, we have that g(yo) # g(y1). To check that you understand this

is the topic of Task [E13.2.3 (1).
Since (X, Ox) is Hausdorff, there is a neighbourhood Uy of ¢(yp) in X with respect

to Ox, and a neighbourhood U; of g(y1) in X with respect to Ox, such that Uy N Uy is
empty. The following hold.

(1) Since UpNU; is empty, we have that f(Up) N f(Uy) is empty. To verify this is the
topic of Task [E13.2.3] (2).

(2) Since f is open, we have that f(Up) belongs to Oy. Since f o g = idy, we have
that f (g(yo)) = yo. Thus we have that f(Up) is a neighbourhood of yo in Y with
respect to Oy.

(3) Since f is open, we have that f(U;) belongs to Oy. Since f o g = idy, we have
that f (g(y1)) = y1. Thus we have that f(U;) is a neighbourhood of y; in Y with
respect to Oy-.

We conclude that (Y, Oy) is Hausdorf.
O

Corollary 13.3.8. Let (X,0x) and (Y,Oy) be topological spaces. Suppose that
(X,O0x) is Hausdorff. Suppose that (X,Ox) and (Y,Oy) are homeomorphic. Then
(Y, Oy) is Hausdorft.

Proof. Follows immediately from Proposition since, by Task a homeomor-
phism is in particular bijective and open. O

Example 13.3.9. By Example [13.3.5] we have that (I2,02) is Hausdorff. By Task
there is a homeomorphism

12— D2
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By Corollary [13.3.8, we deduce that (D2, Op2) is Hausdorff.

Alternatively, by Example |13.3.4] we have that (R? Op2) is Hausdorff. We can thus
13.3.1

deduce from Proposition that (D2, Op2) is Hausdorff.

13.4. Example of a quotient of a Hausdorff topological space
which is not Hausdorff

Example 13.4.1. Let X be the subset of R? given by the union of R x {0} and R x {1}.

R x {1}

R x {0}

Let Ox be the subspace topology on X with respect to (R? Op2). By Example
we have that (R?, Op2) is Hausdorff. By Proposition we deduce that (X, Ox) is
Hausdorft.

Let ~ be the equivalence relation on X generated by (z,0) ~ (x,1), for all € R such
that x # 0.

. R x {1}

(0,0) Lo

We shall demonstrate that (X/~,Ox/.) is not Hausdorff. Let
X T, X/N

be the quotient map. Let Uy be a neighbourhood of 7 ((0,0)) in X/~ with respect to
Ox/~- Let Uy be a neighbourhood of 7 ((0,1)) in X/~ with respect to Ox/..

By definition of Ox/., we have that 77 1(Up) belongs to Ox. By definition of Ox
and Op2, we deduce that there is an open interval |ag, bo[, with ag < 0 < bg, such that
Jag, bo[ x {0} is a subset of 771 (Up). To check that you understand this is the topic of
Task
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‘ R x {1}
(0,1)

! ! ! R x {0}
(G’Oa 0) (07 1) (b()v O)

By an analogous argument, there is an open interval |ay, b;[, with a; < 0 < by, such that
Jai,bi[ x {1} is a subset of 7~1(U7).

| I | R x {1}
(a1,1) (0,1) (b1,1)

\ R x {0}

The following hold.

(1) We have that |max{ag, a1}, min{bg, by }[ x {0} is a subset of 771 (Up).

(2) We have that Jmax{ag, a1}, min{bg, b1 }[ x {1} is a subset of 7=1(U).

\ I \ R x {1}
(max{ao, al}, 1) (0 1) (min{bo, b1}7 1)

\ \ \ R x {0}
(max{ag, a1 },0) (0,1) (min{by, b1 },0)

We deduce that
7 ((Jmax(ag, a1), min(bo, b1)[\ {0}) x {0})

is a subset of both Uy and U;. In particular, Uy N Uy is not empty. We conclude that
(X/~,0x/~) is not Hausdorff.

Remark 13.4.2. The topological space (X/~,Ox/.) is sometimes known as the real
line with two origins.
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Remark 13.4.3. Example demonstrates that a quotient of a Hausdorff topolog-
ical space is not necessarily Hausdorff. Thus we do not yet have a ‘canonical method’
to prove that (M2, Oy2), (K2, Ok2), and our other examples of quotients of topological
spaces, are Hausdorff.

We shall see later that if (X, Ox) and ~ satisfy certain conditions, then (X/~,Ox/.)
can be proven by a ‘canonical method’ to be Hausdorff.

Remark 13.4.4. We can intuitively believe that a quotient of a Hausdorff topological
space might not be Hausdorff. In a Hausdorff topological space, every two points can be
‘separated’ by subsets belonging to the topology: the points are ‘not too close together’.

When we take a quotient, however, we may identify many points. Thus points which
were not ‘close together’ before taking the quotient may be ‘close together’ afterwards.
So much so that we may no longer be able to ‘separate’ every two points.
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E13. Exercises for Lecture 13

E13.1. Exam questions

Task E13.1.1. Let X = {a,b,c,d} be a set with four elements. Let Ox be the topology
on X given by

{@v {CL}, {C}v {d}’ {a” b}’ {a7 C}’ {a’v d}7 {C’ d}v {CL, b, C}, {aa b, d}a {aa ¢, d}v X} .
Demonstrate that (X, Ox) is not Hausdorff.

Task E13.1.2. Prove that the Sorgenfrey line of Task [E11.1.12]is Hausdorff.

Task E13.1.3. Let O be the topology on I? given by the set of subsets U of I? such
that, for every x which belongs to U, we have either that x = 0, or else that one of the

following holds.

(1) We have that = belongs to [0, y[ x [0, y[ for some 0 < y < 3, and this set is a subset
of U.

(2) We have that z belongs to [0,y[ x ]1 —y, 1] for some 0 < y < 3, and this set is a
subset of U.

(3) We have that z belongs to |1 —y, 1] x [0, y[ for some 0 < y < 3, and this set is a
subset of U.
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(4) We have that = belongs to ]1 —y,1] x |1 — y, 1] for some 0 < y < 1, and this set
is a subset of U.

Is (12, ©) homeomorphic to (I%,0;2)?

Task E13.1.4. Prove that (72, Op2) is Hausdorff.

Remark E13.1.1. The intention in Task is for you to give a proof from first
principles. In a later lecture, we shall see how to prove that (T2, O2) is Hausdorff by a
‘canonical method’.

It is also possible to give a proof by appealing to Corollary and the fact, dis-
cussed in Example that (T2, Op2) is homeomorphic to (S' x S, Ogi,¢1). Since
(S1,Oq1) is Hausdorff by Example we have that (S! x S1,Og1,g1) is Hausdorff

by Proposition [13.3.3]

E13.2. In the lecture notes

Task E13.2.1. Suppose that x belongs to R. Prove that |—oo, z] and ]z, co[ belong to
Og.

Task E13.2.2. Prove that the set O of Example [13.2.7| defines a topology on R2.

Task E13.2.3. Let X and Y be sets, and let

f
X ——Y
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be a bijection. Thus there is a map
g
Yy —X
such that go f =idx and fog =idy.

(1) Suppose that yo and y; belong to Y, and that yo # y1. Prove that g(yo) # g(y1)-
You may wish to appeal to the fact that f o g = idy.

(2) Suppose that Uy and U; are subsets of X, and that Uy N U; is empty. Prove that
f(Uo) N f(Uy) is empty. You may wish to appeal to the fact that go f = idx.

Task E13.2.4. In the notation of Example|13.4.1] prove that, for any neighbourhood U
of 7 ((0,0)) in X/~ with respect to Ox., there is an open interval ]a, b[ with a <0 <b
such that ]a, b x {0} is a subset of 7~1(U).

E13.3. For a deeper understanding

Task E13.3.1. Let (X,Ox) be a Hausdorff topological space. Let O’ be a topology
on X such that Ox is a subset of O'. Prove that (X, O ) is Hausdorff.

Definition E13.3.2. A topological space (X, Ox) is T1 if, for every ordered pair (zg, z1)
such that xg and z1 belong to X and xg # x1, there is a neighbourhood of xg in X with
respect to Ox which does not contain x7.

Remark E13.3.3. . Suppose that (X,Ox) is a Hausdorff topological space. Then
(X,0Ox) is a T1 topological space.

Task E13.3.4. Let (X, Ox) be a topological space. Suppose that = belongs to X. Prove
that {x} is closed in X with respect to Ox if and only if (X,Ox) is a T1 topological
space. You may wish to proceed as follows.
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(1) Suppose that (X,Ox) is a T1 topological space. Suppose that y belongs to X,
and that x # y. Since (X, Ox) is a T1 topological space, there is a neighbourhood
Uy of y in X with respect to Ox such that x does not belong to U,. Deduce that y
is not a limit point of {z} in X with respect to Ox.

(2) By Proposition deduce from (1) that {x} is closed in X with respect to Ox..

(3) Suppose instead that {z} is closed in X with respect to Ox for every = which
belongs to X. Suppose that xg and x; belong to X, and that xg # z;. Since {xo}
is closed in X with respect to Ox, observe have that X \ {z1} belongs to Ox.

(4) Moreover, observe that zp belongs to X \ {z;}. Conclude that (X, Ox) is T1.

Corollary E13.3.5. Let (X,Ox) be a Hausdorff topological space. Suppose that x
belongs to X. Then {z} is closed in X with respect to Ox.

Proof. Follows immediately from Task [E13.3.4] and Remark O

Task E13.3.6. Let (X, Ox) be a T1 topological space. Suppose that Ox is finite. Prove
that Ox is the discrete topology on X. You may wish to proceed as follows.

(1) Suppose that = belongs to X. Since (X,Ox) is T1, there is, for every y which
belongs to X such that = # y, a neighbourhood U, of x in X with respect to Ox
such that y does not belong to U,. Observe that

AR
yeY\{z}
is {x}.
(2) Since Ox is finite, observe that
AR
yeY\{x}

belongs to Ox.

(3) Deduce that {z} belongs to Ox. Conclude that Ox is the discrete topology on
X.

Corollary E13.3.7. Let (X, Ox) be a Hausdorff topological space. Suppose that Ox
is finite. Then Ox is the discrete topology on X.

Proof. Follows immediately from Task [13.3.6| and Remark [E13.3.3 O

Task E13.3.8. Let (X/~,0x/,.) be the real line with two origins of Example
Prove that (X/~,Ox/.) is T1. You may wish to appeal to the fact that for any open
interval Ja, b[ such that a < 0 < b, we have that 7 (Ja,b[ x {0}) belongs to Ox/., but
does not contain 7 ((0,1)).

Remark E13.3.9. Example and Task demonstrate that a T1 topological
space is not necessarily Hausdorff.
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E13.4. Exploration — Hausdorffness for metric spaces
Definition E13.4.1. Let X be a set. A metric d on X is separating if, for any xg and
x1 which belong to X with the property that d(zg, 1) = 0, we have that zg = z1.
Definition E13.4.2. A metric space (X, d) is separated if d is separating.

Task E13.4.3. Let (X,d) be a separated, symmetric metric space. Let Oy be the

topology on X corresponding to d of Task [E3.4.9] Prove that (X, O4) is Hausdorff. You
may wish to proceed as follows.

(1) Suppose that xp and z; belong to X, and that x¢ # x1. Since (X, d) is separated,
deduce that d(zg,z1) > 0.

(2) Lete= %. Appealing to Task[E4.3.2| observe that Be(x) is a neighbourhood
of z¢ in X with respect to Oy, and that B.(z1) is a neighbourhood of z; in X with
respect to Oy-

(3) Suppose that y belongs to Be(xg). By definition of d, we have that

d(x(]axl) S d(xoay) + d(y7xl)
< M) 4 d(y,21).

Thus we have that
d(y,z1) > Ao

Since (X, d) is symmetric, deduce that

d(z1,y) > %.

(4) Deduce from (3) that y does not belong to B¢(z1), and thus that B(xg) N Be(x1)
is empty.

(5) Conclude from (2) and (4) that (X, d) is Hausdorff.
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Definition E13.4.4. A topological space (X, Ox) is perfectly normal if, for every or-
dered pair of subsets Ag and A; of subsets of X which are closed in X with respect to
Ox, which have the property that Ag N A; is empty, and which are both not empty,
there is a continuous map

X

I

such that f=1({0}) = A¢ and f~1({1}) = 4;.

Task E13.4.5. Let (X, Ox) be a perfectly normal topological space. Prove that (X, Ox)
is Hausdorff. You may wish to appeal to Corollary [E13.3.5

Task E13.4.6. Let (X,d) be a separated, symmetric metric space. Let Oy be the
topology on X corresponding to d of Task|[E3.4.9] Prove that (X, Oy) is perfectly normal.
You may wish to proceed as follows.

(1) Since Ap N A; is empty, deduce, by Task [£9.4.2] that d(z, Ag) + d(x, A1) > 0 for
every x which belongs to X.

(2) Since (X, d) is symmetric, we have by Task [E4.3.8[ that the map

d(_7A0)

X R

given by x — d(z, Ap) is continuous, and that the map

d(—, A1)
X

R

given by x — d(z, A;) is continuous. By (1), Task [E5.3.6, Task [E5.3.10, and Task
deduce that the map

f
X ——1

3 d(l‘,Ao) 1 o
given by T +— m 1s continuous.

(3) By Remark [E4.3.1| and Task [E9.4.2] observe that f=!({0}) = Ao, and that
I = A

(4) Conclude from (2) and (3) that (X, d) is perfectly normal.

Remark E13.4.1. Task and Task [E£13.4.5| give a second proof that the topo-
logical space arising from every metric space is Hausdorff.
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14.1. Characterisation of Hausdorff topological spaces

Notation 14.1.1. Let X be a set. We denote the subset
{(z,z) e X x X |z € X}

of X x X by A(X).

Example 14.1.2. Let X be R. Then A(X) is the line in R? defined by y = .

Proposition 14.1.3. A topological space (X, Ox) is Hausdorff if and only if A(X) is
closed in X x X with respect to Oxx x.

Proof. We consider the following assertions.

(1) We have that A(X) is closed in X x X with respect to Oxxx.
(2) Every limit point of A(X) in X x X with respect to Oxxx belongs to A(X).

(3) For every (xg,x1) which belongs to X x X, there is a neighbourhood W of (z¢, x1)
in X x X with respect to Oxxx such that W N A(X) is empty.

(4) For every (zp,x1) which belongs to X x X there is a neighbourhood Uy of z¢ in
X with respect to Ox, and a neighbourhood U; of 1 in X with respect to Ox,
such that (Up x Uy) N A(X) is empty.
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(5) There is a neighbourhood Uy of xy in X with respect to Ox, and a neighbourhood
Uy of 21 in X with respect to Ox, such that Uy N U; is empty.

By Proposition we have that (1) holds if and only if (2) holds. By definition of a
limit point of A(X) in X x X with respect to Oxxx, we have that (2) holds if and only
if (3) holds. By Task we have that (3) holds if and only if (4) holds. By Task
we have that (4) holds if and only if (5) holds. We conclude that (1) holds if
and only if (5) holds, as required.

0

14.2. A necessary condition for a quotient of a Hausdorff
topological space to be Hausdorff

Remark 14.2.1. Let X be a set. As discussed in a relation on X is formally a
subset R of X x X. When we write that zg ~ 1, we formally mean that (zo,z1) belongs
to R.

By extension, when we write that ~ is a relation on X, this is shorthand for: we have
a subset R of X x X, and shall write g ~ z1 when (zg,z1) belongs to R. When we
adopt this shorthand, we shall denote R by R.. Tautologically, we thus have that

RNZ{(xo,xl) EXXX’onajl}.

Proposition 14.2.2. Let (X, Ox) be a Hausdorff topological space. Let ~ be an equiv-
alence relation on X. Suppose that (X/~,Ox /N) is a Hausdorff topological space. Then
R. is closed in X x X with respect to Oxxx.

Proof. Let
X L, X/N

be the quotient map. Let

m™XTT
X xX

(X/~) > (X[ ~)

be the map given by (zg,z1) — (7(x0),7(z1)). By Remark we have that 7 is
continuous. By Task we deduce that 7 x 7 is continuous.

Since (X/~,Ox/~) is a Hausdorff topological space, we have, by Proposition
that A (X/~) is closed in (X/~) x (X/~) with respect to O(x/)x(x/~)- Since m x m is
continuous, we deduce, by Task that (7 x )" (A (X/~)) is closed in X x X

with respect to Oxxx.

We have that R = (7 x 7) " (A (X/~)). To verify this is the topic of Task [E14.2.3
We conclude that R is closed in X x X with respect to Oxxx. O

Example 14.2.3. Let X and ~ be as in Example [13.4.1] Then R. is the union of the
following four sets.
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(1) AR\ {0}) x {0}).
(2) A(RNA{0}) x {1}).
(3) (R {0}) x {0}) x (R\{0}) x {1}).
(4) (RA\{0}) x {1}) x (R\{0}) x {0}).

By Task we have that ((0,0),(0,0)) is a limit point of R. in X x X with
respect to Oxxx. Since ((0,0),(0,0)) does not belong to R.., we deduce, by Proposition
that R~ is not closed in X x X with respect to Ox«x. By Proposition we
conclude that (X/~,Ox/.) is not Hausdorff, as we demonstrated directly in Example

1541

Remark 14.2.4. In general, that R~ is closed in X x X with respect to Ox«x is not
sufficient to ensure that (X/~,Ox/.) is Hausdorff. An example is discussed in Task

[E14.3.1] - Task [EI4.35

14.3. Compact topological spaces

Definition 14.3.1. Let (X,Ox) be a topological space. An open covering of X with
respect to Ox is a set {Uj}, ; of subsets of X such that the following hold.

(1) We have that U; belongs to Ox for every j which belongs to J.

(2) We have that X = {J,c, Uj.

Definition 14.3.2. Let (X,Ox) be a topological space. Let U = {U;}._; be an open
covering of X with respect to Ox. Let K be a subset of J. Then {UkikeK is a finite
subcovering of U if the following hld.

(1) We have that {Up};c g is finite.

(2) We have that X = J,cx Us-

Definition 14.3.3. A topological space (X, Ox) is compact if, for every open covering
U= {Uj}jeJ of X with respect to Ox, there is a subset K of J such that {Uy},cx is a
finite subcovering of U.

Example 14.3.4. Let (X, Ox) be a topological space. Suppose that Ox is finite. Then
every set {Uj}jGJ such that U; belongs to Ox for all j which belong to J is finite. Thus
(X,Ox) is compact.

Remark 14.3.5. In particular, if X is finite, then (X, Ox) is compact.
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14.4. Examples of topological spaces which are not compact

Example 14.4.1. The set U = {]-n,n[}, oy is an open covering of R with respect to
Or.

Let K be a subset of N such that {]—n,n[},cf is finite. This is the same as to say that
K is a finite subset of N. Then

U |—n,n[ =]-m,m],
neK
where m = max K. In particular, we do not have that
U |—-n,n[ =R.
nekK

Thus {]-n,n[}, cx is not a finite subcovering of U.
This demonstrates that U/ does not admit a finite subcovering. We conclude that
(R, OR) is not compact.

Example 14.4.2. The set
U={R x]|-n,n[}

neN

is an open covering of R? with respect to Ope.
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Let K be a subset of N such that {R x |—n,n[}, g is finite. This is the same as to say
that K is a finite subset of N. Then

U (R x ]—n,n[) =R x |-m,m][,
nek

where m = max K. In particular, we do not have that

U R x]—n,n) =R

nekK

Thus {R x |—n,n[}, cx is not a finite subcovering of U.
This demonstrates that & does not admit a finite subcovering. We conclude that
(R?, Op2) is not compact.

Example 14.4.3. The set

U={]-n,n[x]-n,n[},cn

is an open covering of R? with respect to Oge.

Let K be a subset of N such that {|—n,n[ x |-n,n[}, o is finite. This is the same as
to say that K is a finite subset of N. Then

U (=n,n[x]=n,n)) ==m,m[ x ]-m,m[,
nekK

where m = max K. In particular, we do not have that
U (]_nan[ X ]—’I’L,HD = R2'
nekK

Thus {]—n,n[ x |-n,n[},cx is not a finite subcovering of U.
This demonstrates that & does not admit a finite subcovering. Thereby it gives a
second proof that (R?, Og2) is not compact.

Example 14.4.4. Suppose that a and b belong to R. Let Oy, 3 be the subspace topology
on Ja, b[ with respect to Oy, p;. The set

u:{]a+%’b_%[}n€Nand%<b*T“
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is an open covering of ]a, b[ with respect to Oy, |-

Let K be a subset of {n eN| % < IFT“} such that {]a + %,b -1 [}nEK is finite. This is

n

the same as to say that K is a finite subset of {n € N | % < b_T“} Then
1 17 _ 1 1
Ulat+to-gl=la+ -2,
nekK
where m = max K. In particular, we do not have that

U la+ L b—21[=]a,0b[.

neK

Thus {]a + %, b— %[}neK is not a finite subcovering of U.
This demonstrates that & does not admit a finite subcovering. We conclude that

(]a, b[,(’)]a’b[) is not compact.

Example 14.4.5. Let us think of S! x ]0,1[ as a cylinder with the two circles at its
ends removed.

The set
{Sl X]%’l_%[}nENandn>2

is an open covering of S' x ]0, 1[ with respect to Og1y)o1-
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Let K be a subset of {n € N|n > 2} such that {S* x 1,1 — %[}nEK is finite. This is

the same as to say that K is a finite subset of {n € N |n > 2}. Then

U (' x ]

nekK

S|=

A=nl=s"x]m -5l

where m = max K. In particular, we do not have that

U (s'x]i1-4]) =5"x]o, 1.
nekK

n
This demonstrates that &/ does not admit a finite subcovering. We conclude that

(S* x]o, 1[,(’)51x]0’1[) is not compact.

Thus {S' x [+, 1 -1 is not a finite subcovering of U.
n nekK

Example 14.4.6. Let Op2 g1 be the subspace topology on D?\ S! with respect to
(D%, Op2).

Let U, be the subset of D2\ S! given by

{(@.y) € B[ |(,p)] <1-1}.

The set U = {Up},,cy is an open covering of D? \ S! with respect to Op2\gt-

Let K be a subset of N such that {Up}, o is finite. This is the same as to say that K
is a finite subset of N. Then

U Un = Uma
nekK
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where m = max K. In particular, we do not have that
| v. =D\ 5"
neK

Thus {Un},,cx is not a finite subcovering of U.
This demonstrates that ¢/ does not admit a finite subcovering. We conclude that
(D2 \ S (’)Dz\51) is not compact.

300



E14. Exercises for Lecture 14

E14.1. Exam questions
Task E14.1.1. Give a counterexample to the following assertion: the set
{(z,2) eR?* |z € X}

is closed in R? with respect to Oz for every subset X of R. Give an example of a
topological property which can be imposed upon X to ensure that the assertion correct.
Justify your answer.

Task E14.1.2. Let Ojg ;| be the subspace topology on [0, 1[ with respect to (R, Og). Is
([0, 1[, (’)[071[) compact?

Task E14.1.3. Find an open covering of I? x R with respect to Oz, which does not
admit a finite subcovering. Conclude that (I2 x R, Oj2,) is not compact.

Task E14.1.4. Let X be the ‘open annulus’ given by

{@y) eR? | <|l(z,)ll <1}.

Let Ox the subspace topology on X with respect to (R?, Op2). Give an example of
an open covering of (X, Ox) which does not admit a finite subcovering. Deduce that
(X, Ox) is not compact.
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Task E14.1.5. Let X be the union of [0,1] x [0,3] and [0,3] x [0,1][. Let Ox be the
subspace topology on X with respect to (R?, Og2).

Find an open covering of X which does not admit a finite subcovering. Conclude that
(X, Ox) is not compact.

Task E14.1.6. Let X be the set given by 2\ ([i, %] X [%, %])

Let

I? T2

be the quotient map. Let O(x) be the subspace topology on m(X) with respect to
(T?,Or2). Demonstrate that (7(X), OW(X)) is not compact.

Task E14.1.7. Prove that the Sorgenfrey line of Task [E11.1.12]is not compact.

Task E14.1.8. Give an example of an equivalence relation ~ on R such that (R/~, Og..)
is compact.
E14.2. In the lecture notes

Task E14.2.1. Let (X, Ox,) and (X1, Ox,) be topological spaces. Let A be a subset of
Xo x X1. Suppose that (xg,z1) belongs to Xy x X;. Prove that the following assertions
are equivalent.

(1) There is a neighbourhood W of (zg,x1) in X x X with respect to Oxx x such that
W N A is empty.

(2) There is a neighbourhood Uy of xy in X with respect to Ox, and a neighbourhood
Uy of z1 in X with respect to Ox such that (Uy x U;) N A is empty.
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E14.3. For a deeper understanding

Task E14.2.2. Let Xy and X7 be sets. Let A be a subset of Xy x X;. Let Uy be a
subset of Xy, and let U; be a subset of X;. Prove that (Uy x Uy) N A= Uy NUj.

Task E14.2.3. Let X be a set, and let ~ be an equivalence relation on X. Let
X — s X/~

be the quotient map. Let

m™X T
X x X

(X/~) X (X/~)
be the map given by (zg,z1) — (m(x0), 7(x1)). Prove that R = (7 x 7) "' (A (X/~)).
Task E14.2.4. Let X and ~ be as in Example Prove that ((0,0),(0,0)) is a
limit point of R. in X x X with respect to Ox.
E14.3. For a deeper understanding
Task E14.3.1. Let X be the set given by

{% | n e N}.

Let OX be the set of subsets U with the property that, for every = which belongs to U,
there are real numbers a and b such that one of the following holds.

(1) We have that x belongs to ]a,b], and that ]a, b[ is a subset of U.

(2) We have that = belongs to ]a,b[\ (Ja,b[ N X), and that ]a, b\ (Ja,b[ N X) is a subset
of U.

Prove that O defines a topology on R.
Terminology E14.3.2. The topology OX is known as the K -topology on R.

Task E14.3.3. Prove that (R, OX) is Hausdorff. You may wish to proceed as follows.

(1) Observe that Og is a subset of OX.
(2) Appeal to Example [13.2.1] and to Task [E13.3.1

Task E14.3.4. Let ~ be the equivalence relation on R generated by 1 ~ % for every n
which belongs to N. Prove that (R/~, Og/..) is not Hausdorff. You may wish to proceed
as follows.
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(1) Let

R ™

R/~

be the quotient map. Let Uy be a neighbourhood of 7(0) in R/~ with respect to
Og/~. Let Uy be a neighbourhood of 7(1) in R/~ with respect to Og/... By Remark
we have that 7 is continuous. Deduce that 7=!(Uy) and 7~ 1(U;) belong to
Okr.

(2) Since (1) belongs to Uy, observe that, by definition of ~, the set X is a subset of
r1 (Ul)

(3) Suppose that n belongs to N. Since % belongs to 7~!(U;), and since 77 1(Uy)
belongs to O, observe that, by definition of OF and the fact that % belongs to X,
there are real numbers a,, and b,, such that a,, < % < by, and such that |ay, b, is a
subset of 7~ 1(Uy).

(4) Since 71 (Up) belongs to OF, we have, by definition of O, that there are real
numbers a and b such that one of the following holds.

(I) We have that 0 belongs to ]a, b[, and that ]a, b[ is a subset of 7=1(Up).

(IT) We have that 0 belongs to ]a,b[\ (Ja,b[NX), and that |a,b]\ (Ja,b[NX) is a
subset of 7~ (Up).

In either case, let n be a natural number such that % < b. Let = be a real number
which does not belong to X, and which has the property that a, < x < % and that
0 < z. Observe that x belongs to both 7= (Up) and to 7! (Uy).

(5) Deduce from (4) that m(z) belongs to both Uy and U;. In other words, Uy N Uj is
not empty.

(6) Conclude that (R/~, Og/.) is not Hausdorff.

Task E14.3.5. Let ~ be the equivalence relation on R of Task [E14.3.4] Let OK? be the
product topology on R? with respect to two copies of (R, O¥). Prove that R. is closed
in R? with respect to OF ’. You may wish to proceed as follows.

(1) Suppose that z is a limit point of ¥ in R with respect to OX. By Task [E8.3.10
deduce that z is a limit point of % in R with respect to Og.

(2) Demonstrate that the only limit point of ¥ in R with respect to Og is 0.

(3) Suppose that a and b belong to R, and that a < 0 < b. Observe |a,b[ \ X is a
neighbourhood of 0 in R with respect to O¥. Since ¥ N (Ja,b[ \ ) is empty, deduce
that 0 is not a limit point of ¥ in R with respect to OF.

(4) Deduce from (1)—(3) that ¥ is closed in R with respect to OX.
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E14.3. For a deeper understanding

(5) By Task [E3.3.1, deduce from (4) that ¥ x X is closed in R? with respect to O
(6) Observe that R. is ¥ x .

(7) Conclude that R. is closed in R? with respect to O,

Task E14.3.6. Let (X,Ox) and (Y,Oy) be topological spaces. Suppose that either
(X,0x) or (Y,0Oy) is not compact. Prove that (X x Y,Oxxy) is not compact. You
may wish to glance back at Example and Example
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A. Set theoretic foundations

A.1. Set theoretic equalities and relations

Remark A.1.1. Throughout the course, we shall make use of various set theoretic
equalities and relations. Table and Table list many of these.

Remark A.1.2. Here is one more set theoretic identity which does not fit into Table
Given a set X, a set Y, a subset A of X, and a subset B of Y, we have that

(X XY)\(Ax B) = ((X\A4) x B)U(Ax (Y\B)U(X\A)x(Y\B)).

A.2. Injections, surjections, and bijections

Definition A.2.1. Let X and Y be sets. A map

X S

Y

is an injection, or injective, if, for every xo and 1 which belong to X such that f(z¢) =
f(x1), we have that zy = x.

Proposition A.2.2. Let X, Y, and Z be sets. Let

X / Y
and

Y g Z
be injections. Then

X gof Z

is an injection.

Proof. Suppose that xg and 1 belong to X, and that g (f(xo)) = g (f(x1)). Since g is
injective, we deduce that f(xzg) = f(x1). Since f is injective, we deduce that z¢g = z1. O
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Remark A.2.3. Let X be a set. Let A be a subset of X. Let

7

A

X

be the inclusion map of Terminology Then 7 is an injection.
Definition A.2.4. Let X and Y be sets. A map

¥ S

Y

is a surjection, or surjective, if, for every y which belongs to Y, there is an x which
belongs to X such that f(z) =y.

Proposition A.2.5. Let X and Y be sets. Suppose that there exists an injection

X L» Y,
and that there exists an injection

Y g X.
Then there exists a bijection

X —Y.

Proof. Let Aj be the subset X \ g(Y) of X. For every n which belongs to N, let A,, be
the subset of Y given by g (f(An—1)).
Suppose that x belongs to X, and that  does not belong to A;. Then x belongs to
g(Y). Since g is injective, we deduce that there is a unique y, € Y such that g(y,) = x.
Let

f/
X —Y

be the map given by

if = bel to A, f €N,
gﬂ_}{f(:c) if  belongs to or some n

Yo otherwise.

We shall first prove that f’ is injective. Suppose that zy and x; belong to X, and
that f'(z9) = f’(x1). Suppose that 21 does not belong to A, for any n € N. Then
f'(x1) = yz,. Suppose that zo belongs to A,, for some m € N. Then f'(z9) = f(xo).
We deduce that

21 =9Ywn)=9(f'(x1)) = g(f(z0)).
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Thus z1 belongs to A,,+1. This contradicts our assumption on z;. We deduce that xg
does not belong to A, for any m € N. Thus f’(x¢) = yz,. Then

20 = 9(Wao) = 9 (f'(@0)) = 9 (f (1)) = 9(yz,) = 21

An entirely analogous argument demonstrates that if x¢ does not belong to A,, for any
n € N, then zy = 1.

Suppose now that there is an m € N such that xg belongs to A,, and that there is an
n € N such that x; belongs to A,,, Then

f(xo) = f'(x0) = f'(x1) = f(z1).

Since f is injective, we deduce that xg = x1. This completes our proof that f’ is injective.

We shall now prove that f is surjective. Suppose that y belongs to Y. We have that
g(y) does not belong to A;. For every n € N, suppose that y does not belong to f(A,).
Then g(y) does not belong to A,, for every n € N. Thus f’ (¢(y)) = y. Suppose instead
that there is an n € N such that y belongs to f(A,). Then there is an = € A,, such that
f(z) = y. This completes our proof that f’ is surjective.

We have demonstrated that f’ is both injective and surjective. By Task we
conclude that f’ is bijective. O

Proposition does not assert that f and g are inverse to each other. Rather,
we used f and g to find a new map

X —Y%,
which we proved to be a bijection.

Remark A.2.6. Proposition[A.2.5]is sometimes known as the Cantor-Bernstein-Schroder
theorem.

A.3. Coproducts

Notation A.3.1. Let J be a set. For every j which belongs to J, let X; be a set. We
denote by | |;c; X; the set U;c; (X; x {j}).

Remark A.3.2. Suppose that jo and j; belong to J. We allow that X;; = X}, .

Definition A.3.3. Let J be a set. For every j which belongs to J, let X; be a set. We
refer to | |, ; X; as a coproduct.

Notation A.3.4. Let J and X be sets. For every j which belongs to J, let X; be X.
We often denote | |;.; X; by |];c; X.
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Notation A.3.5. When J is {0, 1}, we often denote |_|{071} X; by XoUX;. In particular,
we often denote |—|je{0,1} X by XUX. When J is {0,1,...,n}, we similarly often denote

|_|je{o,1,...,n} X;j by
XoUXjU...UuX,.

n

We sometimes also denote |_|j€{071,m’n} X; by Uo<jcn Xj-

It is important to appreciate that X L1 X and X U X are very different! For X U X
is X, but X LU X can be thought of as ‘two disjoint copies’ of X. Think of T72.

One doughnut is very different from two doughnuts!

=0 =0

Proposition A.3.6. Let X be a set, and let Xo and X; be subsets of X. Suppose that
X = XypUX;. Moreover, suppose that this union is disjoint, in the sense of Terminology
Then there is a bijection between X and the coproduct of Xy and X;.

Proof. Let
(Xo x {0}) U (X7 x {1}) L X

be the map given by (z9,0) — z¢ for every zy which belongs to Xy, and by (x1,1) — x;
for every x1 which belongs to X;. Let

X

(Xo x {0}) U (X1 x {1})
be the map given by

o (x,0) if zyp belongs to X,
x
(z,1) if 1 belongs to X.

The fact that X is the disjoint union of Xy and X exactly ensures that g is well defined.
We have that go f = id(Xox{O})U(Xlx{l})v and that fog=1idx.
O

Remark A.3.7. Proposition [A:3.6] justifies our use of the same notation for disjoint
unions and coproducts.
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A.4. Equivalence relations
Definition A.4.1. Let X be a set. A relation on X is a subset of X x X.

Notation A.4.2. Let X be a set, and let R be a relation on X. Suppose that xg belongs
to X, that z1 belongs to X, and that (z,z;) belongs to R. We write z¢ ~ z7.

Definition A.4.3. Let X be a set. A relation R on X is an equivalence relation if the
following hold.

(1) For all z € X, we have that = ~ x.
(2) For all zp € X and x1 € X, such that xg ~ x1, we have that x1 ~ xg.

(3) For all zp € X, 21 € X, and 3 € X, such that g ~ x; and z; ~ x2, we have
that Tog ~ X2.

Remark A.4.4. Axiom (1) is known as reflexivity. Axiom (2) is known as symmetry.
Axiom (3) is known as transitivity.

Example A.4.5. Let X = {a,b,c} be a set with three elements. We have the following.
(1) The relation R of X given by

{(a,0),(b,a)}

is not an equivalence relation. Symmetry and transitivity hold, but reflexivity does
not.

(2) The relation R of X given by

{(a,a), (b,0),(c, ), (b, )}

is not an equivalence relation. Reflexivity and transitivity hold, but symmetry does
not, since (¢, b) does not belong to R.

(3) The relation R of X given by

{(a7 a)’ (b7 b)’ (C7 C)’ (a7 C)’ (C7 a)’ (b7 C), (C7 b)}

is not an equivalence relation. Reflexivity and symmetry hold, but transitivity does
not, since (a,c) and (¢, b) belong to R, but (a,b) does not.

(4) The relation R of X given by

{(a,a),(b,0),(c,c)}

is an equivalence relation on R. It is the relation defined by equality.
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(5) The relation R of X given by

{(a,a), (b,0), (¢, ), (a,¢), (¢c;a)}

is an equivalence relation on R.

Notation A.4.6. Let X be a set, and let R be a relation on X. Let us consider the
following subsets of X x X.

(1) Let A be the subset of X x X given by
{(z,z) e X x X |z € X}.
(2) Let Rsym denote the set

{(zg,21) € X x X | (z1,20) € R}.
(3) Let Requiv denote the set of (z,2') € X x X such that there are is an integer n > 2
and an n-tuple (x1,...,2,) € X X ... x X with the following properties.

(a) We have that x = .

(b) We have that 2’ = z,.

(c) For every 1 < i <n —1, we have that (z;,z;41) € AURU Reym.
Remark A.4.7. For any y,y/ € X, we have that if (y,y) € AU R U Rem, then
(v',y) € AURU Reym.

Proposition A.4.8. Let X be a set, and let R be a relation on X. Then Requv defines
an equivalence relation on X.

Proof. We verify that the conditions of Definition [A.4.3] hold.
(1) Let z € X. Since (z,z) € A, and hence (z,2) € AU RU Rsym. Thus the pair
(x,x) exhibits that (z,z) € Requiv-
(2) Let (x,2") € Requiv- By definition of Requiv, there is an integer n > 2, and an
n-tuple (z1,...,z,) € X X ... x X, with the following properties.
(a) We have that x = ;.
(b) We have that 2’ = z,.
(c) For every 1 <i <n —1, we have that (z;,z,41) € AURU Rgym.

By Remark we have, for every 1 < n — 1, that (2j41,2;) € AU RU Reym.
Thus the n-tuple (z,,...,x1) exhibits that (2, z) belongs to Requiv-

(3) Let (z,2") € Requiv, and let (z/,2") € Requiv-

By definition of Requiv, there is an integer m > 2, and an m-tuple (z1,...,2p) €
X x ... x X, with the following properties.
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(a) We have that x = ;.
(b) We have that 2/ = z,.
(c) For every 1 <i <m — 1, we have that (z;,z;4+1) € AURU Reym.

In addition, there is an integer n > 2, and an n-tuple (y1,...,y,) € X X ... x X
with the following properties.

(a) We have that 2/ = y;.
(b) We have that z” = y,.
(c) For every 1 <1i <mn —1, we have that (y;,yix1) € AURU Reym.

The (m+n—1)-tuple (21, ..., Tm—1,Tm = Y1, Y2, - - - , Yn) exhibits that (x, 2”) belongs
to Requiv‘

O

Remark A.4.9. Let X be a set, and let R be a relation on X. It is straightforward to
prove that if R is a relation on X such that R C R', then Requiv C R’. In other words,
Requiv is the smallest equivalence relation on X containing R.

Terminology A.4.10. Let X be a set, and let R be a relation on X. We refer to Requiv
as the equivalence relation generated by R.

Remark A.4.11. In practise, given R, we typically do not determine Requiv by working
directly with the definition given in Notation Rather we just ‘inductively throw
in by hand everything we need to obtain an equivalence relation, but nothing else’!

Example A.4.12. Let X = {a, b, ¢} be a set with three elements. We have the following.
(1) Let R be the relation on X given by

{(a,0),(b,a)} .

Then Requiv is given by
{(a,a), (b,b),(c,c),(a,b),(bya)}.
(2) Let R be the relation on X given by

{(a,a), (b,0),(c,c), (b, )} .

Then Requiv is given by

{(a,a),(b,b), (¢, ), (b,¢), (¢, b)} -
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(3) Let R be the relation on X given by
{(a,a), (b,b), (¢, ), (a,¢), (¢,a), (b,¢), (¢,b)} .
Then Requiv is given by
{(a,a),(b,0), (¢, ), (a, ), (¢, a), (b, ), (¢,D), (a, D), (b, a)} -
In other words, Requiv is all of X x X.
(4) Let R be the relation on X given by
{(0,0);} .

Then Requiv is given by
{(a,a), (b,b),(c,0)}
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Equality Setting

XN (Ujer Yi) =Uies (X NY;) A set X, and a (possibly infinite) set {Yi},o;
of sets.

X\ (User 4i) =Nier (X \ A;)) A set X, and a (possibly infinite) set {A;},.;
of subsets of X.

X\ (Nier 4i) =Uier (X \ A7) A set X, and a (possibly infinite) set {A;},.;
of subsets of X.

f_l (Uz‘el Ai) = Uie[ f_l (A;) A map

f
X—Y

of sets, and a (possibly infinite) set {A;},.; of
subsets of Y.

! (ﬂiel Ai) = Nier f71(A) A map

S

X Y

of sets, and a (possibly infinite) set {A;},.; of
subsets of Y.

FHY\NA) =X\ f71(4) A map

f
X ——Y

of sets, and a subset A of Y.
A surjective map

f
X ——Y

of sets, and a subset A of Y.

Table A.1.: Set theoretic equalities
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Relation

Setting

f(ANB) C f(A) N f(B)

f(A) C f(B)

fHA) c f7H(B)

AcC 1 (f(A)

A map
S
X—Y

of sets, a subset A of X, and a subset B of X.
A map

f
X —Y
of sets, and subsets A and B of X such that

ACB.
A map

X

Y

of sets, and subsets A and B of Y such that

AC B.
A map

f
X——Y

of sets, and a subset A of X.
A map

f
X——Y

of sets, and a subset A of Y.

Table A.2.: Set theoretic relations
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