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1. Monday 6th January

1.1. Definition of a topological space

Definition 1.1.1. Let X be a set, and let O be a set of subsets of X. Then (X,O) is
a topological space if the following hold.

(1) The empty set ∅ belongs to O.

(2) The set X belongs to O.

(3) Let U be a union of (possibly infinitely many) subsets of X which belong to O.
Then U belongs to O.

(4) Let U and U ′ be subsets of X which belong to O. Then U ∩ U ′ belongs to O.

Remark 1.1.2. By induction, the following holds if and only if (4) holds.

(4’) Let J be a finite set, and let {Uj}j∈J be a set of subsets of X such that Uj belongs
to O for all j ∈ J . Then

⋂
j Uj belongs to O.

Terminology 1.1.3. Let (X,O) be a topological space. We refer to O as a topology on
X.

� A set may be able to be equipped with many different topologies! See §1.4.

1.2. Open and closed subsets

Notation 1.2.1. Let X be a set. By A ⊂ X we shall mean that A is a subset of X,
allowing that A may be equal to X. In the past, you may instead have written A ⊆ X.

Terminology 1.2.2. Let (X,O) be a topological space.

(1) Let U be a subset of X. Then U is open with respect to O if U belongs to O.

(2) Let V be a subset of X. Then V is closed with respect to O if X \ V is an open
subset of X with respect to O.

11



1. Monday 6th January

1.3. Discrete and indiscrete topologies

Example 1.3.1. We can equip any set X with the following two topologies.

(1) The discrete topology, consisting of all subsets of X. In other words, the power
set of X.

(2) The indiscrete topology, given by {∅, X}.

Remark 1.3.2. By (1) and (2) of Definition 1.1.1, every topology on a set X must
contain both ∅ and X. Thus the indiscrete topology is the smallest topology with which
X may be equipped.

1.4. Finite examples of topological spaces

Example 1.4.1. Let X = {a} be a set with one element. Then X can be equipped
with exactly one topology, given by {∅, X}. In particular, the discrete topology on X is
the same as the indiscrete topology on X.

Remark 1.4.2. The topological space of Example 1.4.1 is important! It is known as
the point.

Example 1.4.3. Let X = {a, b} be a set with two elements. We can define exactly four
topologies upon X.

(1) The discrete topology, given by
{
∅, {a}, {b}, X

}
.

(2) The topology given by
{
∅, {a}, X

}
.

(3) The topology given by
{
∅, {b}, X

}
.

(4) The indiscrete topology, given by
{
∅, X

}
.

Remark 1.4.4. Up to the bijection

X X
f

given by a 7→ b and b 7→ a, or in other words up to relabelling the elements of X, the
topologies of (2) and (3) are the same.

Terminology 1.4.5. The topological space (X,O), where O is the topology of (2) or
(3), is known as the Sierpiński interval, or Sierpiński space.

Remark 1.4.6. In fact (1) – (4) is a list of every possible set of subsets of X which
contains ∅ and X. In other words, every set of subsets of X which contains ∅ and X
defines a topology on X.

12



1.5. Open, closed, and half open intervals

Example 1.4.7. Let X = {a, b, c} be a set with three elements. We can equip X with
exactly twenty nine topologies! Up to relabelling, there are exactly nine.

(1) The set

{∅, {b}, {a, b}, {b, c}, X}

defines a topology on X.

(2) The set OX given by

{∅, {a}, {c}, X}

does not define a topology on X. This is because

{a} ∪ {c} = {a, c}

does not belong to OX , so (3) of Definition 1.1.1 is not satisfied.

(3) The set OX given by

{∅, {a, b}, {a, c}, X}

does not define a topology on X. This is because

{a, b} ∩ {a, c} = {a}

does not belong to OX , so (4) of Definition 1.1.1 is not satisfied.

Remark 1.4.8. There are quite a few more ‘non-topologies’ on X.

1.5. Open, closed, and half open intervals

Notation 1.5.1. Let R denote the set of real numbers.

Notation 1.5.2. Let a, b ∈ R.

(1) We denote by ]a, b[ the set

{x ∈ R | a < x < b}.

a b

] [

13



1. Monday 6th January

(2) We denote by ]a,∞[ the set

{x ∈ R | x > a}.

a

]

(3) We denote by ]−∞, b[ the set

{x ∈ R | x < b}.

b

[

(4) We sometimes denote R by ]−∞,∞[.

Terminology 1.5.3. We shall refer to any of (1) – (4) in Notation 1.5.2 as an open
interval.

Remark 1.5.4. We shall never use the notation (a, b), (a,∞), (−∞, b), or (−∞,∞) for
an open interval. In particular, for us (a, b) will always mean an ordered pair of real
numbers a and b.

Notation 1.5.5. Let a, b ∈ R. We denote by [a, b] the set

{x ∈ R | a ≤ x ≤ b}.

a b

[ ]

Terminology 1.5.6. We shall refer to [a, b] as a closed interval.

Notation 1.5.7. Let a, b ∈ R.

14



1.5. Open, closed, and half open intervals

(1) We denote by [a, b[ the set

{x ∈ R | a ≤ x < b}.

a b

[ [

(2) We denote by ]a, b] the set

{x ∈ R | a < x ≤ b}.

a b

] ]

(3) We denote by [a,∞[ the set

{x ∈ R | x ≥ a}.

a

[

(4) We denote by ]−∞, b] the set

{x ∈ R | x ≤ b}.

b

]

Terminology 1.5.8. We shall refer to any of (1) – (4) of Notation 1.5.7 as a half open
interval.

Terminology 1.5.9. By an interval we shall mean a subset of R which is either an open
interval, a closed interval, or a half open interval.

15



1. Monday 6th January

1.6. Standard topology on R

Definition 1.6.1. Let OR denote the set of subsets U of R with the property that, for
every x ∈ U , there is an open interval I such that x ∈ I and I ⊂ U .

Observation 1.6.2. We have that R belongs to OR. Moreover ∅ belongs to OR, since
the required property vacuously holds.

Example 1.6.3. Let U be an open interval ]a, b[.

a b

] [

Then U belongs to OR. For every x ∈ U , we can take the corresponding open interval I
such that x ∈ I and I ⊂ U to be U itself.

� There are infinitely many other possibilities for I. For instance, suppose that U is
the open interval ]−1, 2[. Let x = 1.

−1 21

] [

We can take I to be ]−1, 2[, but also for example
]
0,
√

2
[
.

−1 210
√

2

] [

] [
U

I
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E1. Exercises for Lecture 1

E1.1. Exam questions

Task E1.1.1. Let X = {a, b, c, d}. Which of the following defines a topology on X?

(1) {∅, {a}, {c}, {a, c}, {b, d}, X}

(2) {∅, {a, c}, {d}, {b, d}, {a, c, d}, X}

(3) {∅, {a}, {b, d}, {a, b, d}, {a, c, d}, X}

Task E1.1.2.

(1) Let X be an n× n grid of integer points in R2, where n ∈ N.

Let O be the set of subsets of X which are m×m grids, for 0 ≤ m ≤ n, at the top
right corner. Think of the case m = 0 as the empty set.

17



E1. Exercises for Lecture 1

Does (X,O) define a topological space?

(2) Let Y be an (n+ 1)× n grid of integer points in R2.

Let O be the set of subsets of Y which are m×m grids, for 0 ≤ m ≤ n, at the top
right corner. Again, think of the case m = 0 as the empty set.

18



E1.1. Exam questions

Does (Y,O) define a topological space?

(3) Let X be as in (1). Suppose that n ≥ 3. Let O′ be the union of the following sets
of subsets of X.

(a) O.

(b) The set of subsets of X which are m×m grids, for 0 ≤ m ≤ n, at the bottom
left corner.

(c) Unions of subsets of X of the kind considered in (a) and (b). For instance,
the union of a 3× 3 grid at the bottom left corner, and a 2× 2 grid at the top
right corner.

Does (X,O′) define a topological space?

Task E1.1.3 (Continuation Exam, August 2013). Let X denote the set

([0, 1]× ]0,∞]) ∪ (]0,∞]× [0, 1]) .

19



E1. Exercises for Lecture 1

Let O be the union of {∅, X}, the set

{[0, 1]× [0, n] | n ∈ N}

and the set

{[0, n]× [0, 1] | n ∈ N} .

Is (X,O) a topological space?

E1.2. In the lecture notes

Task E1.2.1. Let X be a set.

(1) Verify that conditions (1) – (4) of Definition 1.1.1 are satisfied by the discrete
topology on X.

(2) Verify that conditions (1) – (4) of Definition 1.1.1 are satisfied by the indiscrete
topology on X.

Task E1.2.2.

(1) Check that you agree that (1) of Example 1.4.3 is the discrete topology.
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E1.3. For a deeper understanding

(2) Verify that (2) and (3) of Example 1.4.3 define topologies.

Task E1.2.3.

(1) Verify that (1) of Example 1.4.7 defines a topology.

(2) Can you find the nine different topologies, up to relabelling, on a set with three
elements?

(3) Find four examples of non-topologies on a set with three elements, in addition to
(2) and (3) of Example 1.4.7.

E1.3. For a deeper understanding

Task E1.3.1. Let X be a set. Let C be a set of subsets of X such that the following
hold.

(1) The empty set ∅ belongs to C.

(2) The set X belongs to C.

(3) Let V be an intersection of (possibly infinitely many) subsets of X which belong
to C. Then V belongs to C.

(4) Let V and V ′ be subsets of X which belong to C. Then V ∪ V ′ belongs to C.

Let O be given by

{X \ V | V belongs to C} .

Prove that (X,O) is a topological space.

Remark E1.3.2. Conversely, let (X,O) be a topological space. Let C denote the set of
closed subsets of X. Then C satisfies (1) – (4) of Task E1.3.1.

Task E1.3.3 (Longer). Let I be a subset of R. Prove that I is an interval if and only
if it has the following property: if x < y < x′ for x, x′ ∈ I and y ∈ R, then y ∈ I. For
proving that I is an interval if this condition is satisfied, you may wish to proceed as
follows.

(1) Suppose that I is bounded. Denote the greatest lower bound of I by a, and denote
the least upper bound of I by b. Prove that if a < y < b, then y ∈ I.

(2) Using this, deduce that I is ]a, b[, [a, b], [a, b[, or ]a, b].

(3) Give a proof when I is not bounded.
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Remark E1.3.4. Task E1.3.3 relies crucially on the existence of a least upper bound
for a subset of R which is bounded above, and on the existence of a greatest lower bound
for a subset of R which is bounded below. This is known as the completeness of R.

We shall demonstrate in later lectures that (R,OR) has important properties. To use
a couple of terms which we shall define later, it is connected and locally compact. The
proofs ultimately rest upon the completeness of R, via Task E1.3.3.

Task E1.3.5. Let I0 and I1 be intervals. Prove that I0 ∩ I1 is an interval. You may
wish to appeal to Task E1.3.3.

E1.4. Exploration — Alexandroff topological spaces

Definition E1.4.1. Let X be a set, and let X♦X denote the set of ordered pairs (x0, x1)
of X such that x0 is not equal to x1. A pre-order on X is the data of a map

X♦X {0, 1},
χ

or, in other words, for every ordered pair (x0, x1) of distinct elements of X, an element
of the set {0, 1}. We require that for any ordered triple (x0, x1, x2) of mutually distinct
elements of X, such that χ(x0, x1) = 1 and χ(x1, x2) = 1, we have that χ(x0, x2) = 1.

Terminology E1.4.2. There is an arrow from x0 to x1 if χ(x0, x1) = 1. We depict this
as follows.

x0 x1

Example E1.4.3. Let X = {0, 1}. There are four pre-orders on X, pictured below.

0 1 0 1 0 1 0 1

The rightmost diagram should be interpreted as: χ(0, 1) = 0 and χ(1, 0) = 0.

Example E1.4.4. Let X = {0, 1, 2}. There are 29 pre-orders on X. A few are pictured
below.

0 1 0 1 0 1 0 1

2 2 2 2

0 1 0 1 0 1

2 2 2
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Example E1.4.5. The following are not examples of pre-orders on X.

0 1 0 1 0 1

2 2 2

Task E1.4.6. Why do the diagrams of Example E1.4.5 not define pre-orders.?

Example E1.4.7. The following defines a pre-order on N.

1 2 3 4 5 6 7

Notation E1.4.8. Let X be a set, and let χ be a pre-order on X. For any pair (x0, x1)
of elements of X, we write x0 < x1 if eiher there is an arrow from x0 to x1 or x0 = x1.

Definition E1.4.9. Let O< denote the set of subsets U of X with the property that if
x ∈ U and x′ has the property that x < x′, then x′ ∈ U .

Task E1.4.10. Prove that (X,O<) is a topological space.

Task E1.4.11. Which of the four pre-orders of Example E1.4.3 corresponds to the
topology defining the Sierpiński interval? Which corresponds to the discrete topology?
Which to the indiscrete topology?

Task E1.4.12. Find a pre-order on X = {a, b, c} which corresponds to the topology O
on X given by

{∅, {b}, {a, b}, {b, c}, X} .

Task E1.4.13. List all the subsets of X = {a, b, c, d} which belong to the topology O
on X corresponding to the following pre-order.

a

b c

d

The topological space (X,O) is sometimes known as the pseudo-circle.

Task E1.4.14. Let (X,<) be a set equipped with a pre-order, and let O< denote the
corresponding topology on X. Prove that, for any set {Uj}j∈J of subsets of X belonging
to OX , we have that

⋂
j∈J Uj belongs to O<. In particular, this holds even if J is infinite.
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Remark E1.4.15. In other words, (X,O<) is an Alexandroff topological space.

Notation E1.4.16. Let (X,O) be an Alexandroff topological space. For any x ∈ X,
let Ux denote the intersection of all subsets of X which contain x and which belong to
O.

Definition E1.4.17. Let (X,O) be an Alexandroff topological space. For any x0, x1 ∈
X, define x0 < x1 if Ux1 ⊂ Ux0 .

Task E1.4.18. Prove that < defines a pre-order on X.

Task E1.4.19. Let X = {a, b, c, d, e}, and let O denote the topology on X given by

{∅, {a, b}, {c}, {d, e}, {a, b, c}, {c, d, e}, {a, b, d, e}, X} .

Draw the pre-order corresponding to (X,O).

E1.5. Exploration — Zariski topologies

Notation E1.5.1. Let Z denote the set of integers.

Notation E1.5.2. Let Spec(Z) denote the set of prime numbers.

Notation E1.5.3. For any integer n, let V (n) denote the set

{p ∈ Z | p is prime, and p | n} .

Definition E1.5.4. Let O denote the set

{Spec(Z) \ V (n) | n ∈ Z} .

Task E1.5.5. Prove that (Spec(Z),O) is a topological space. You may wish to make
use of Task E1.3.1.

Terminology E1.5.6. The topology O on Spec(Z) is known as the Zariski topology.

Remark E1.5.7 (Ignore if you have not met the notion of a ring before). Generalising
this, one can define a topology on the set of prime ideals of any commutative ring. This
is a point of departure for algebraic geometry.
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2. Tuesday 7th January

2.1. Standard topology on R, continued

Example 2.1.1. Let U be a disjoint union of open intervals. For instance, the union of
]−3,−1[ and ]4, 7[.

−3 −1

] [

4 7

] [

Then U belongs to OR. There are two cases.

(1) If −3 < x < −1, we can, for instance, take I to be ]−3,−1[

−3 −1x

] [

] [
I

4 7

] [

(2) If 4 < x < 7, we can, for instance, take I to be ]4, 7[.

−3 −1 x

] [

4 7

] [

] [
I

Remark 2.1.2. In fact, every subset of U which belongs to OR is a disjoint union of
(possibly infinitely many) open intervals. To prove this is the topic of Task E2.3.7.

Example 2.1.3. Let U = {x} be a subset of R consisting of a single x ∈ R.

x

Then U does not belong to OR. The only subset of {x} to which x belongs is {x} itself,
and {x} is not an open interval.
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Example 2.1.4. Let U be the half open interval [1, 5[.

1 5

[ [

Then U does not belong to OR, since there is no open interval I such that 1 ∈ I and
I ⊂ U .

1 5

[ [

] [

Lemma 2.1.5. Let
{
Uj
}
j∈J be a set of (possibly infinitely many) subsets of R such

that Uj ∈ OR for all j ∈ J . Then
⋃
j∈J Uj belongs to OR.

Proof. Let

x ∈
⋃
j∈J

Uj .

By definition of
⋃
j∈J Uj , we have that x ∈ Uj for some j ∈ J . By definition of OR, there

is an open interval I such that x ∈ I and I ⊂ Uj ⊂
⋃
j∈J Uj .

Observation 2.1.6. Let I and I ′ be open intervals. Then I ∩ I ′ is a (possibly empty)
open interval. This is the topic of Task E2.2.1.

Example 2.1.7. The intersection of the open intervals ]0, 2[ and ]1, 3[ is the open interval
]1, 2[.

0 2

] [

1 3

] [

] [

The intersection of the open intervals ]−3,−1[ and ]4, 7[ is the empty set.

−3 −1

] [

4 7

] [
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2.1. Standard topology on R, continued

Lemma 2.1.8. Let U and U ′ be subsets of R which belong to OR. Then U ∩U ′ belongs
to OR.

Proof. Let x ∈ U ∩ U ′. By definition of OR, we have the following.

(1) There is an open interval IU such that x ∈ IU and IU ⊂ U .

(2) There is an open interval IU ′ such that x ∈ IU ′ and IU ′ ⊂ U ′.

Then x ∈ IU ∩ IU ′ and IU ∩ IU ′ ⊂ U ∩ U ′. By Observation 2.1.6, we have that IU ∩ IU ′
is an open interval.

Proposition 2.1.9. The set OR defines a topology on R.

Proof. This is exactly established by Observation 1.6.2, Lemma 2.1.5, and Lemma 2.1.8.

Terminology 2.1.10. We shall refer to OR as the standard topology on R.

Remark 2.1.11. An infinite intersection of subsets of R which belong to OR does not
necessarily belong to OR. For instance, by Example 1.6.3, we have that

]
− 1
n ,

1
n

[
belongs

to OR for every integer n ≥ 1. However,⋂
n∈N

]
− 1
n ,

1
n

[
= {0}.

−1 1
2

0 1
2

1

By Example 2.1.3, the set {0} does not belong to OR.

Remark 2.1.12. The topological space (R,OR) is fundamental. We shall construct all
our geometric examples of topological spaces in various ‘canonical ways’ from it.

A principal reason that we allow infinite unions in (3) of Definition 1.1.1, but only
finite intersections in (4) of Definition 1.1.1, is that these properties hold for OR.

Remark 2.1.13. An Alexandroff topological space is a topological space (X,O) which,
unlike (R,OR) and the other geometric examples of topological spaces that we shall
meet, has the property that if U is an intersection of (possibly infinitely many) subsets
of X which belong to O, then U belongs to O. Alexandroff topological spaces are the
topic of Exploration E1.4.
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2. Tuesday 7th January

2.2. Subspace topologies

Remark 2.2.1. We shall explore several ‘canonical ways’ to construct topological spaces.
In this section, we discuss the first of these.

Definition 2.2.2. Let (Y,OY ) be a topological space, and let X be a subset of Y . Let
OX denote the set

{X ∩ U | U ∈ OY } .

Proposition 2.2.3. Let (Y,OY ) be a topological space, and let X be a subset of Y .
Then (X,OX) is a topological space.

Proof. We verify that each of the conditions of Definition 1.1.1 holds.

(1) Since OY is a topology on Y , we have that ∅ belongs to OY . We also have that
∅ = X ∩ ∅. Thus ∅ belongs to OX .

(2) Since OY is a topology on Y , we have that Y belongs to OY . We also have that
X = X ∩ Y . Thus X belongs to OX .

(3) Let {Uj}j∈J be a set of subsets of X which belong to OX . By definition of OX ,
we have, for every j ∈ J , that

Uj = X ∩ U ′j ,

for a subset U ′j of Y which belongs to OY . Now⋃
j∈J

Uj =
⋃
j∈J

(
X ∩ U ′j

)

= X ∩

⋃
j∈J

U ′j

 .

Since OY is a topology on Y , we have that
⋃
j∈J U

′
j belongs to OY . We deduce that⋃

j∈J Uj belongs to OX .

(4) Suppose that U0 and U1 are subsets of X which belong to OX . By definition of
OX , we have that

U0 = X ∩ U ′0
and

U1 = X ∩ U ′1,

for a pair of subsets U ′0 and U ′1 of Y which belong to OY . Now

U0 ∩ U1 =
(
X ∩ U ′0

)
∩
(
X ∩ U ′1

)
= X ∩

(
U ′0 ∩ U ′1

)
.

Since OY is a topology on Y , we have that U ′0 ∩U ′1 belongs to OY . We deduce that
U0 ∩ U1 belongs to OX .
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2.3. Example of a subspace topology — the unit interval

Remark 2.2.4. The flavour of this proof is very similar to many others in the early
part of the course. It is a very good idea to work on it until you thoroughly understand
it. This is the topic of Task E2.2.2.

Terminology 2.2.5. We refer to OX as the subspace topology on X with respect to
(Y,OY ).

2.3. Example of a subspace topology — the unit interval

Definition 2.3.1. Let I denote the closed interval [0, 1]. Let OI denote the subspace
topology on I with respect to (R,OR).

Terminology 2.3.2. We refer to (I,OI) as the unit interval.

Example 2.3.3. Let ]a, b[ be an open interval such that 0 < a < b < 1.

0 1

] [

a b

As we observed in Example 1.6.3, the open interval ]a, b[ belongs to OR, We also have
that

]a, b[ = I ∩ ]a, b[ .

Thus ]a, b[ belongs to OI .

Example 2.3.4. Let [0, b[ be an half open interval such that 0 < b < 1.

0 1

[ [

b

Let a be any real number such that a < 0. As we observed in Example 1.6.3, the open
interval ]a, b[ belongs to OR, We have that

[0, b[ = I ∩ ]a, b[ .

Thus [0, b[ belongs to OI .

Example 2.3.5. Let ]a, 1] be an half open interval such that 0 < a < 1.

0 1

] ]

a
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Let b be any real number such that b > 1. As we observed in Example 1.6.3, the open
interval ]a, b[ belongs to OR, We have that

]a, 1] = I ∩ ]a, b[ .

Thus ]a, 1] belongs to OI .

Example 2.3.6. As we proved in Proposition 2.2.3, the set I belongs to OI .

0 1

[ ]

Example 2.3.7. Disjoint unions of subsets of I of the kind discussed in Example 2.3.3,
Example 2.3.4, and Example 2.3.5, belong to OI . This is a consequence of Proposition
2.2.3, but could also be demonstrated directly. For instance, the set[

0, 1
4

[
∪
]

3
8 ,

5
8

[
∪
]

1
4 , 1
]

belongs to OI .

0 1

] [

3
8

5
8

[ [

1
4

] ]

3
4
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E2. Exercises for Lecture 2

E2.1. Exam questions

Task E2.1.1. Decide whether the following subsets of R are open, closed, both, or
neither with respect to OR.

(1) ]−23, 150[

(2) R

(3) [2, 3]

(4)
⋃
n∈Z

]
n− 1

2 , n+ 1
2

[
(5) ]−∞, 2].

(6)
⋃
n∈N

]
1
n , 10

[
.

(7) ]5, 8[ ∪ ]47, 60]

(8)
⋃
n∈N

[
1
n , 1−

1
n

[
Task E2.1.2. Give an example to demonstrate that an infinite union of closed subsets
of R with respect to OR need not be closed.

Task E2.1.3. Let X be the subset [1, 2] ∪ [4, 5[ of R. Let OX denote the subspace
topology on X with respect to (R,OR). For each of the following, give an example of a
subset U of X which has the required property, and which belongs to OX .

(1) We have that U ∩ [4, 5[ = ∅, and neither 1 nor 2 belongs to U .

(2) We have that U ∩ [1, 2] = ∅, and 4 does not belong to U .

(3) We have that U ∩ [4, 5[ = ∅, and 1 belongs to U .

(4) We have that U ∩ [1, 2] = ∅, and 4 belongs to U .

(5) Both 2 and 4 belong to U .

(6) We have that U ∩ [1, 2] is not empty, that U ∩ [4, 5[ is not empty, and that neither
1, 2, nor 4 belongs to U .
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E2.2. In the lecture notes

Task E2.2.1. Prove Observation 2.1.6.

� Since this task is appealed to in the proof of Proposition 2.1.9, you are not permitted
to use that OR is a topology on R!

Task E2.2.2. Take a look at the proof of Proposition 2.2.3. Afterwards, cover it up,
and try to prove Proposition 2.2.3 for yourself. There is esssentially only one way to do
it. Keep working on this until you can manage it.

E2.3. For a deeper understanding

Task E2.3.1. Let (Y,OY ) be a topological space. Let X be a subset of Y , and let OX
denote the subspace topology on X with respect to (Y,OY ). Let A be a subset of X.
Let OXA denote the subspace topology on A with respect to (X,OX). Let OYA denote
the subspace topology on A with respect to (Y,OY ). Prove that OXA = OYA .

Task E2.3.2. Let (Y,OY ) be a topological space. Let X be a subset of Y , and let OX
be the subspace topology on X with respect to (Y,OY ). Prove that a subset V of X
is closed with respect to OX if and only if there is a subset V ′ of Y with the following
properties.

(1) We have that V ′ is closed with respect to (Y,OY ).

(2) We have that V = X ∩ V ′.

Task E2.3.3. Let (Y,OY ) be a topological space. Let X be a subset of Y , and let OX
denote the subspace topology on X with respect to (Y,OY ).

(1) Suppose that X belongs to OY . Prove that if U belongs to OX , then U belongs
to OY .

(2) Does the conclusion of (1) necessarily hold if X does not belong to OY ?

(3) Suppose that X is closed with respect to OY . Let V be a subset of X which is
closed with respect to OX . Prove that V , when viewed as a subset of Y , is closed
with respect to OY . You may wish to appeal to Task E2.3.2.

(4) Does the conclusion of (3) necessarily hold if X is not closed with respect to OY ?

Task E2.3.4. Let (X,OX) be a topological space. Let {Uj}j∈J be a set of subsets of
X with the property that X =

⋃
j∈J Uj . For every j ∈ J , let OUj denote the subspace

topology on Uj with respect to (X,OX). Suppose that Uj belongs to OX for every j ∈ J .
Let U be a subset of X such that U ∩ Uj belongs to OUj for every j ∈ J . Prove that U
belongs to OX . You may wish to proceed as follows.
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E2.3. For a deeper understanding

(1) Appealing to Task E2.3.3 (1), observe that U ∩Aj belongs to OX .

(2) Prove that

U =
⋃
j∈J

U ∩Aj .

For this, you may wish to begin by observing that U = U ∩X, and then appeal to
one of the assumptions.

Remark E2.3.5. There is an analogous result for closed sets, but an additional hy-
pothesis is required. This is the topic of Task E8.3.8.

Task E2.3.6. Let (X,OX) be a topological space. Let {Uj}j∈J be a set of subsets of
X with the property that X =

⋃
j∈J Uj . For every j ∈ J , let OUj denote the subspace

topology on Uj with respect to (X,OX). Suppose that Uj belongs to OX for every j ∈ J .
Let V be a subset of X such that V ∩ Uj is closed with respect to OUj for every j ∈ J .
Prove that V is closed with respect to OX . You may wish to proceed as follows.

(1) Observe that, since V ∩Uj is closed with respect to OUj , for every j ∈ J , we have
that Uj \ (V ∩ Uj) belongs to OUj , for every j ∈ J .

(2) Observe that Uj \ (V ∩ Uj) = Uj ∩ (X \ V ).

(3) By Task E2.3.4, deduce that X \ V belongs to OX .

Task E2.3.7 (More difficult). Prove that a subset of R belongs to OR if and only if it
is a disjoint union of open intervals. For proving that if U belongs to OR, then it is a
disjoint union of open intervals, you may wish to proceed as follows.

(1) Define a relation ∼ on U by a ∼ b if

[min{a, b},max{a, b}] ⊂ U.

Verify that ∼ defines an equivalence relation.

(2) Let

U U/∼
q

denote the map given by x 7→ 〈x〉, where 〈x〉 denotes the equivalence class of x with
respect to ∼. By means of Task E1.3.3, prove that, for every y ∈ U/∼, the subset
q−1(y) of U is an interval.

(3) Moreover, appealing to the fact that U belongs to OR, prove that, for every
y ∈ U/∼, the interval q−1(y) is open.
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(4) Verify that, for distinct y, y′ ∈ U/∼, the set

q−1(y) ∩ q−1(y′)

is empty. Verify that

U =
⋃

y∈U/∼

q−1(y).

Remark E2.3.8. In fact, a subset of R is open in the standard topology on R if and
only if it is a disjoint union of countably many open intervals. This will follow from Task
E2.3.7 by a later task.
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3. Monday 13th January

3.1. Product topologies

Remark 3.1.1. In this section, we discuss our second ‘canonical way’ to construct
topological spaces.

Definition 3.1.2. Let (X,OX) and (Y,OY ) be topological spaces. Let OX×Y denote
the set of subsets U of X × Y with the property that, for every (x, y) ∈ U , there is a
subset UX of X and a subset UY of Y with the following properties.

(1) We have that x ∈ UX , and that UX belongs to OX .

(2) We have that y ∈ UY , and that UY belongs to OY .

(3) We have that UX × UY ⊂ U .

Proposition 3.1.3. Let (X,OX) and (Y,OY ) be topological spaces. Then (X×Y,OX×Y )
is a topological space.

Proof. We verify that each of the conditions of Definition 1.1.1 holds.

(1) The empty set ∅ belongs to OX×Y , since the required property vacuously holds.

(2) Let (x, y) ∈ X × Y . We have the following.

(a) Since OX is a topology on X, we have that X belongs to OX . Evidently,
x ∈ X.

(b) Since OY is a topology on Y , we have that Y belongs to OY . Evidently,
y ∈ Y .

(c) We have that X × Y ⊂ X × Y .

Taking UX to be X, and taking UY to be Y , we deduce that X × Y belongs to
OX×Y .

(3) Let {Uj}j∈J be a set of subsets of X × Y which belong to OX×Y . Let (x, y) ∈⋃
j∈J Uj . By definition of

⋃
j∈J Uj , there is a j ∈ J such that (x, y) ∈ Uj .

By definition of OX×Y , there is a subset UX of X and a subset UY of Y with the
following properties.

(a) We have that x ∈ UX , and that UX belongs to OX .

(b) We have that y ∈ UY , and that UY belongs to OY .
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3. Monday 13th January

(c) We have that UX × UY ⊂ Uj .

We have that Uj ⊂
⋃
j∈J Uj . By (c), we deduce that UX × UY ⊂

⋃
j∈J Uj . We

conclude from the latter, (a), and (b), that
⋃
j∈J Uj belongs to OX×Y .

(4) Let U0 and U1 be subsets of X × Y which belong to OX×Y . Let (x, y) ∈ U0 ∩ U1.
By definition of OX×Y , there is a subset UX0 of X and a subset UY0 of Y with the
following properties.

(a) We have that x ∈ UX0 , and that UX0 belongs to OX .

(b) We have that y ∈ UY0 , and that UY0 belongs to OY .

(c) We have that UX0 × UY0 ⊂ U0.

Moreover, by definition of OX×Y , there is a subset UX1 of X and a subset UY1 of Y
with the following properties.

(d) We have that x ∈ UX1 , and that UX1 belongs to OX .

(e) We have that y ∈ UY1 , and that UY1 belongs to OY .

(f) We have that UX1 × UY1 ⊂ U1.

We deduce the following.

(i) By (a) and (d), we have that x ∈ UX0 ∩ UX1 . Moreover, since OX defines a
topology on X, we have by (a) and (d) that UX0 ∩ UX1 belongs to OX .

(ii) By (b) and (e), we have that y ∈ UY0 ∩ UY1 . Moreover, since OY defines a
topology on Y , we have by (b) and (e) that UY0 ∩ UY1 belongs to OY .

(iii) We have that(
UX0 ∩ UX1

)
×
(
UY0 ∩ UY1

)
=
(
UX0 × UY0

)
∩
(
UX1 × UY1

)
.

By (c) and (f), we have that(
UX0 × UY0

)
∩
(
UX1 × UY1

)
⊂ U0 ∩ U1.

Hence (
UX0 ∩ UX1

)
×
(
UY0 ∩ UY1

)
⊂ U0 ∩ U1.

Taking UX to be UX0 ∩UX1 , and taking UY to be UY0 ∩UY1 , we conclude that U0∩U1

belongs to OX×Y .

Remark 3.1.4. This proof has much in common with the proof of Proposition 2.1.9 and
the proof of Proposition 2.2.3. Perhaps you can begin to see how to approach a proof
of this kind? Again, it is a very good idea to work on the proof until you thoroughly
understand it. This is the topic of Task E3.2.1.
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3.2. The product topology on R2

3.2. The product topology on R2

Definition 3.2.1. Let OR2 denote the product topology on R2 with respect to two
copies of (R,OR).

Example 3.2.2. Let U0 = ]a0, b0[, and let U1 = ]a1, b1[ be open intervals. Let (x, y) ∈
U0 × U1.

a0 b0

a1

b1

By Example 1.6.3, both U0 and U1 belong to OR. We deduce that U0 × U1 belongs to
OR2 , since we can take UX to be U0, and can take UY to be U1.

a0 b0

a1

b1

� In the figures, the dashed boundary does not belong to U0 × U1. We shall adopt
the same convention in all our figures.

Example 3.2.3. Let U denote the disc{
(x, y) ∈ R2 | ‖(x, y)‖ < 1

}
.

Let (x, y) be a point of U .
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Let ε be a real number such that

0 < ε < 1− ‖(x, y)‖ .

Let UX denote the open interval ]
x− ε

√
2

2 , x+ ε
√

2
2

[
.

Let UY denote the open interval ]
y − ε

√
2

2 , y + ε
√

2
2

[
.

We have that x ∈ UX , and that y ∈ UY . Let (x′, y′) be a point of UX × UY . Then

∥∥(x′, y′)
∥∥ =

∥∥(∣∣x′∣∣ , ∣∣y′∣∣)∥∥
<
∥∥∥(|x|+ ε

√
2

2 , |y|+ ε
√

2
2

)∥∥∥
≤ ‖(|x| , |y|)‖+

∥∥∥( ε√2
2 , ε

√
2

2

)∥∥∥
= ‖(x, y)‖+ ε

< ‖(x, y)‖+ (1− ‖(x, y)‖)
= 1.

Thus UX × UY ⊂ U .

By Example 1.6.3, both U0 and U1 belong to OR. We conclude that U belongs to OR2 .

Remark 3.2.4. There are very many subsets U of R2 which belong to OR2 . We just
have to be able to find a small enough ‘open rectangle’ around every point of U which
is contained in U .

38



3.2. The product topology on R2

Example 3.2.5. An ‘open star’ belongs to OR2 .

Example 3.2.6. An ‘open ladder’ belongs to OR2 .

Example 3.2.7. An ‘open blob’ belongs to OR2 .

Example 3.2.8. The open half plane given by{
(x, y) ∈ R2 | x > 0

}
belongs to OR2 .
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3. Monday 13th January

Example 3.2.9. The union of two ‘open infinite wedges’ belongs to OR2 .

Example 3.2.10. Let X denote the subset of R2 given by{
(x, y) ∈ R2 | 0 < x < 1 and y = 0

}
.

Let x be any point of X.

x

No matter how small a rectangle we take around x, there will always be a point of R2

inside this rectangle which does not belong to X. Thus X does not belong to OR2 .
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Example 3.2.11. Let X denote the ‘half open strip’ given by [0, 1[× ]0, 1[.

The solid part of the boundary of this figure belongs to X. Let (x, y) belong to either
of the vertical boundary lines. For example, we can take (x, y) to be (0, 1

2).

x

No matter how small a rectangle we take around (x, y), there will always be a point
inside this rectangle which does not belong to X. For example, if (x, y) is (0, 1

2), there
will always be a point (x′, y′) inside this rectangle such that x′ < 0. Thus X does not
belong to OR2 .
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E3.1. Exam questions

Task E3.1.1. Are the following subsets of R2 open, closed, both, or neither with respect
to the topology OR2?

(1) The union of the set{
(x, y) ∈ R2 | 0 ≤ x < 1 and |y| < 1− x

}
and the set {

(x, y) ∈ R2 | −1 < x ≤ 0 and |y| < x+ 1
}
.

(2)
⋃
n∈ZXn, where

Xn =
{

(n, y) ∈ R2 | y ∈ R
}
.
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(3) R× [0, 1].

(4) The set consisting of the single point {(123, π)}.

(5) The union of the set{
(x, y) ∈ R2 | −1 < x < 3

4 and ‖(x, y)‖ < 1
}

and the set {
(x, y) ∈ R2 | 3

4 ≤ x < 1 and ‖(x, y)‖ ≤ 1
}
.

(6) The union of the set{
(x, y) ∈ R2 | y > 0 and ‖(x, y)‖ < 1

}
and the set [3, 5]× [0, 1].

(7)
⋃
n∈N

{
(x, y) ∈ R2 | ‖(x, y)‖ ≤ 3− 1

n

}
.

(8) The set {
(x, 0) ∈ R2 | 0 ≤ x ≤ 1

}
.

[ ]
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E3.2. In the lecture notes

Task E3.2.1. Do the same as in Task E2.2.2 for the proof of Proposition 3.1.3.

E3.3. For a deeper understanding

Task E3.3.1. Let (X,OX) and (Y,OY ) be topological spaces. Let VX be a subset of
X which is closed with respect to OX , and let VY be a subset of Y which is closed with
respect to (Y,OY ). Prove that VX × VY is closed with respect to (X × Y,OX×Y ).

Task E3.3.2. Let (X0,OX0) and (X1,OX1) be topological spaces. Let Y0 be a subset
of X0, and let Y1 be a subset of X1.

Let OY0 denote the subspace topology on Y0 with respect to (X0,OX0). Let OY1
denote the subspace topology on Y1 with respect to (X1,OX1).

Let OY0×Y1 denote the product topology on Y0 × Y1 with respect to (Y0,OY0) and
(Y1,OY1). Let O′Y0×Y1 denote the subspace topology on Y0 × Y1 with respect to (X0 ×
X1,OX0×X1).

Prove that OY0×Y1 = O′Y0×Y1 .

Task E3.3.3. Let (X0,OX0), (X1,OX1), and (X2,OX2) be topological spaces. Let
OX0×(X1×X2) denote the product topology on X0 ×X1 ×X2 with respect to (X0,OX0)
and (X1×X2,OX1×X2). Let O(X0×X1)×X2

denote the product topology on X0×X1×X2

with respect to (X0 ×X1,OX0×X1) and (X2,OX2).
Prove that OX0×(X1×X2) = O(X0×X1)×X2

.

Notation E3.3.4. We shall denote the topology OX0×(X1×X2) = O(X0×X1)×X2
on X0×

X1 ×X2 by OX0×X1×X2 .

Notation E3.3.5. We shall denote by OR3 the topology OR×R×R on R3.

Remark E3.3.6. Let n ∈ N. For every 1 ≤ i ≤ n, let (Xi,OXi) be a topological
space. By induction, it follows from Task E3.3.3 that all the possible ways of equipping
X1× . . .×Xn with a topology, using only the topologies OXi , for 1 ≤ i ≤ n, and product
topologies built from these, coincide.

Notation E3.3.7. We shall denote this topology on X1 × . . . Xn by OX1×...×Xn .

Notation E3.3.8. We shall denote by ORn the topology OR× . . .× R︸ ︷︷ ︸
n

on Rn.

E3.4. Exploration — metric spaces

Remark E3.4.1. Some of you may have met the notion of a metric before, for instance
in TMA4145 Lineære Metoder. Don’t worry if not, all material on metric spaces below,
and in future exercises, will not be examined. Certainly I recommend to focus on the
topics covered in the lectures, before looking into any of the exercises on metric spaces.
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Nevertheless, those of you who are comfortable with the lectures may find the exercises
on metric spaces interesting, and useful in future courses. Though it will not be necessary,
you are welcome to make use of any of the exercises on metric spaces in the exam wherever
there is an opportunity for this.

Definition E3.4.2. Let X be a set. A metric on X is a map

X ×X [0,∞[
d

such that the following hold.

(1) For every x which belongs to X, we have that d(x, x) = 0.

(2) For all x0, x1, and x2 which belong to X, we have that

d(x0, x1) + d(x1, x2) ≥ d(x0, x2).

Remark E3.4.3. The condition of Definition E3.4.2 is known as the triangle inequality.

Remark E3.4.4. If you have seen the definition of a metric in a previous course, a couple
of additional conditions were probably required to be satisfied. For many purposes, these
are not needed. In particular, we shall not need them in this section.

Definition E3.4.5. A metric space is a pair (X, d) of a set X and a metric d on X.

Notation E3.4.6. Let

Rn × Rn Rn
dRn

denote the map given by

((x1, . . . , xn), (y1, . . . , yn)) 7→
√

(y1 − x1)2 + . . .+ (yn − xn)2.

In other words, dRn is the usual notion of distance between a pair of points in Rn.

(x0, y0)

(x1, y1)

x1 − x0

y1 − y0
√

(x1 − x0)2 + (y1 − y0)2
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Task E3.4.7. Prove that dRn defines a metric on Rn, or look up a proof from an earlier
course.

Definition E3.4.8. Let (X, d) be a metric space. Let x ∈ X, and let ε > 0 be a real
number. The open ball of radius ε around x is the set Bε(x) given by{

x′ ∈ X | d(x, x′) < ε
}
.

x

ε

Task E3.4.9. Let (X, d) be a metric space. Let Od denote the set of subsets U of X
with the property that, for every x ∈ U , there is a real number ε > 0 such that Bε(x) is
a subset of U . Prove that Od defines a topology on X.

Remark E3.4.10. We shall take the point of view that a metric is a way to construct a
topology. Once we have constructed this topology, we can forget about the metric from
whence it came!

All the topological spaces that we shall be interested in can be constructed without
using a metric. For this reason, metrics will never appear in the lectures.

A characteristic feature of topology, as opposed to geometry, is that we shall often
be manipulating topological spaces in ways which change the distance between pairs of
points: squashing and stretching, for instance.

Nevertheless, there are many important areas of mathematics, such as differential
geometry, which merge both topological and geometrical ideas. Here one sometimes em-
phasises a construction which relies on a metric, sometimes emphasises a purely topolog-
ical construction, and often investigates the interplay between both worlds. The courses
TMA4190 Mangfoldigheter and MA8402 Lie-Grupper og Lie-Algebraer can lead in this
direction.

Remark E3.4.11. Though metrics will never appear in the lectures, many of the con-
cepts that we shall look at for arbitrary topological spaces can be thought of in other,
equivalent, ways for topologies coming from a metric. We shall explore this in future
exercises.

Task E3.4.12. Let n ≥ 1. Prove that OdRn = ORn .
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4. Tuesday 14th January

4.1. Examples of product and subspace topologies

Remark 4.1.1. We can combine our two ‘canonical’ ways of constructing new topolog-
ical spaces from old ones to obtain many interesting examples of topological spaces.

Notation 4.1.2. We denote by S1 the set{
(x, y) ∈ R2 | ‖(x, y)‖ = 1

}
.

We denote by OS1 the subspace topology on S1 with respect to (R2,OR2).

Terminology 4.1.3. We refer to S1 as the circle.

Example 4.1.4. By definition, a subset of S1 belongs to OS1 if and only if it is the
intersection with S1 of a subset of R2 which belongs to OR2 . The generic example is an
‘open arc’.

(

)

This is, for instance, the intersection with S1 of an ‘open rectangle’ in R2, which belongs
to OR2 by Example 3.2.2.
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Since OS1 defines a topology on S1, we also have that disjoint unions of (possibly in-
finitely many) ‘open arcs’ belong to OS1 .

)

(

)

(

This can also be demonstrated directly. The subset of S1 given by the two ‘open arcs’
in the previous picture is, for instance, the intersection with S1 with the subset of R2

depicted below, which belongs to OR2 .

Alternatively, it is the intersection with S1 with the subset of R2 consisting of two disjoint
‘open rectangles’, depicted below.

Notation 4.1.5. We denote by OI2 the product topology on I2 with respect to two
copies of (I,OI).
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4.1. Examples of product and subspace topologies

Terminology 4.1.6. We refer to I2 as the unit square.

Remark 4.1.7. The topology OI2 coincides with the subspace topology on I2 with
respect to (R2,OR2). To prove this is the topic of Task E3.3.2.

Example 4.1.8. Any of the open sets pictured in Examples 3.2.2 – 3.2.3 and 3.2.5 –
3.2.7 which ‘fit inside I2’ belong to I2. For instance, an ‘open star’.

To see this, let (x, y) be a point of a subset U of I2 of this kind.

We have the following.

(1) We can find an open interval UX = ]a, b[ such that 0 < a < b < 1 and x ∈ UX .

0 1a bx

] [
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(2) We can find an open interval UY = ]a′, b′[ such that 0 < a′ < b′ < 1 and y ∈ UY .

0

1

a′

b′

y

]
[

(3) We have that UX × UY ⊂ U .

As we observed in Example 2.3.3, both UX and UY belong to OI . Thus (1) – (3) together
demonstrate that U belongs to OI2 .

Example 4.1.9. Let U be the subset of I2 given by{
(x, y) ∈ I2 | |(x, y)| < 1

2

}
.

We have the following.
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(1) Let (x, y) be a point of U which does not lie on the boundary of I2.

As in Example 4.1.8, we can find an ‘open rectangle’ around (x, y) which is a subset
of U .

(2) Let (x, y) be a point of U with x = 0.

Let ε be a real number such that

0 < ε < 1
2 − y.

Let UX denote the half open interval[
0, ε
√

2
2

[
.

Let UY denote the open interval]
y − ε

√
2

2 , y + ε
√

2
2

[
.
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We have that (0, y) ∈ UX × UY . As we saw in Example 2.3.4, we have that UX
belongs to OI . As we saw in Example 2.3.3, we have that UY belongs to OI .
Moreover, let (x′, y′) be a point of UX ×UY . Arguing as in Example 3.2.3, we have
that ∥∥(x′, y′)

∥∥ < 1
2 .

Thus UX × UY ⊂ U .

(3) Let (x, y) be a point of U with y = 0.

Let ε be a real number such that

0 < ε < 1
2 − x.

Let UX denote the open interval]
x− ε

√
2

2 , x+ ε
√

2
2

[
.

Let UY denote the half open interval[
0, ε
√

2
2

[
.

We have that (x, 0) ∈ UX × UY . As we saw in Example 2.3.3, UX belongs to OI .
As we saw in Example 2.3.4, UY belongs to OI . Moreover, let (x′, y′) be a point of
UX × UY . Arguing as in Example 3.2.3, we have that∥∥(x′, y′)

∥∥ < 1
2 .
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Thus UX × UY ⊂ U .

We conclude that U belongs to OI2 .

Remark 4.1.10. Many more subsets of I2 with ‘segments on the boundary’ belong to
OI2 .

Example 4.1.11. A ‘truncated star’ belongs to OI2 .

Example 4.1.12. A ‘half open ladder’ belongs to OI2 .

Example 4.1.13. The following subset of I2 belongs to OI2 .
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Remark 4.1.14. We now introduce a few more important examples of product and
subspace topologies. Exploring them is the topic of Tasks E4.1.3 – E4.1.6.

Notation 4.1.15. Let D2 denote the set{
(x, y) ∈ R2 | ‖(x, y)‖ ≤ 1

}
.

We denote by OD2 the subspace topology on D2 with respect to (R2,OR2).

Terminology 4.1.16. We refer to (D2,OD2) as the unit disc.

Notation 4.1.17. Let k be a real number such that 0 < k < 1. Let Ak denote the set{
(x, y) ∈ R2 | k ≤ ‖(x, y)‖ ≤ 1

}
.

We denote by OAk the subspace topology on Ak with respect to (R2,OR2).

Terminology 4.1.18. We refer to (Ak,OAk) as an annulus.

Notation 4.1.19. We denote by OS1×I the product topology on S1× I with respect to
(S1,OS1) and (I,OI).

� This cylinder is hollow!

Terminology 4.1.20. We refer to (S1 × I,OS1×I) as the cylinder.
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4.2. Definition of a continuous map

Notation 4.2.1. Let X and Y be sets. Let

X Y
f

be a map. Let U be a subset of Y . We denote by f−1(U) the set

{x ∈ X | f(x) ∈ U} .

Terminology 4.2.2. We refer to f−1(U) as the inverse image of U under f .

Definition 4.2.3. Let (X,OX) and (Y,OY ) be topological spaces. A map

X Y
f

is continuous if, for every U ∈ OY , the subset f−1(U) of X belongs to OX .

Remark 4.2.4. A map

R R
f

is continuous with respect to the standard topology on both copies of R if and only if
it is continuous in the ε− δ sense that you have met in earlier courses. To prove this is
the topic of Task E4.2.9.

4.3. Examples of continuous maps between finite topological
spaces

Example 4.3.1. Let X be a set with two elements {a, b}. Let OX denote the topology
on X given by

{∅, {b}, X} .

In other words, (X,OX) is the Sierpiński interval. Let Y denote the set with three
elements {a′, b′, c′}. Let OY denote the topology on Y given by{

∅, {a′}, {c′}, {a′, c′}, {b′, c′}, Y
}
.

Let

X Y
f

denote the map given by a 7→ b′ and b 7→ c′. We have the following.

(1) f−1(∅) = ∅.
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(2) f−1 ({a′}) = ∅.

(3) f−1 ({c′}) = {b}.

(4) f−1 ({a′, c′}) = {b}.

(5) f−1 ({b′, c′}) = X.

(6) f−1(Y ) = X.

We see that f−1(U) ∈ OX for every U ∈ OY . Thus f is continuous.

Example 4.3.2. Let (X,OX) and (Y,OY ) be as in Example 4.3.1. Let

Y X
g

denote the map given by a′ 7→ a, b′ 7→ b, and c′ 7→ a. We have that

g−1 ({b}) = {b′}.

Thus g is not continuous, since {b} belongs to OX , but {b′} does not belong to OY .
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E4.1. Exam questions

Task E4.1.1. Are the following subsets of I2 open, closed, both, or neither, with respect
to OI2?

(1) The disc given by {
(x, y) ∈ R2 |

∥∥(x− 1
4 , y −

1
4)
∥∥ < 1

8

}
.

Can you justify your answer rigorously?

(2) The set {
(0, y) ∈ I2 | 1

4 < y < 3
4

}
.

(
)
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(3)
[

1
4 ,

3
4

]
× I.

(4) The union of the set{
(x, y) ∈ I2 | 0 < x ≤ 1

2 and |y| < 2x
}

and the set {
(x, y) ∈ I2 | 1

2 ≤ x < 1 and |y| < 2− 2x
}
.

Task E4.1.2. Let X denote the subset of R2 consisting of the red and blue parts of the
flag below.

Let OX denote the subspace topology on X with respect to (R2,OR2). For each of the
following, draw an example of a subset U of X which has the required property, and
which belongs to OX . Use dashes to indicate which parts of the boundary U in your
picture are not to be thought of as belonging to U .
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(1) U intersects none of the rectangles except the upper right red rectangle; and U
does not intersect the boundary of this rectangle.

(2) U intersects all four red rectangles and both of the blue rectangles; but U does
not intersect the boundary of X.

(3) U intersects both of the blue rectangles; but U does not intersect any of the red
rectangles.

(4) U intersects only the horizontal blue rectangle, the upper left red rectangle, and
the lower left red rectangle; U contains a segment of the border of both the upper left
red rectangle and the lower left red rectangle; but U does not contain the entirety
of either of the upper left red rectangle or the lower left red rectangle.

(5) U intersects only the vertical blue rectangle and the two upper red rectangles; U
contains a segment on all four sides of both of the two upper red rectangles; but U
does not contain the entirety of either of the upper red rectangles.

Task E4.1.3. For each of the following, give an example of a subset U of the unit disc
D2 which has the required property.

(1) U belongs to OD2 but, when viewed as a subset of R2, does not belong to OR2 .

(2) U belongs to OD2 and, when viewed as a subset of R2, also belongs to OR2 .

(3) U does not belong to OD2 and, when viewed as a subset of R2, also does not
belong to OR2 .

(4) U is closed with respect to OD2 but, when viewed as a subset of R2, is not closed
with respect to OR2 .

(5) U belongs to OD2 and, when viewed as a subset of R2, is closed with respect to
OR2 .

Task E4.1.4. Draw the subset U of the annulus A 1
2

given by

{
(x, y) ∈ A 1

2
| 1

4 < x ≤ 1
}
.

Does U belong to OA 1
2

? Does the set V given by

{
(x, y) ∈ A 1

2
| 1

4 ≤ x ≤ 1
}

belong to OA 1
2

?
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Task E4.1.5. Let (Ak,OAk) be an annulus.

The horizontal line depicted below is a segment of the x-axis in R2.

For each of the following, give and draw an example of a subset U of Ak which has the
required property, and which belongs to OAk .

(1) U contains a segment of the inner circle which is above the horizontal line, and
does not contain a segment of the inner circle which is below the horizontal line; U
contains a segment of the outer circle which is below the horizontal line, and does
not contain a segment of the outer circle which is above the horizontal line.

(2) U contains a segment of the inner circle which is above the horizontal line, and its
reflection in the horizontal line; U does not contain any segment of the outer circle.

(3) U contains the entire outer circle, but does not contain any point of the inner
circle.

(4) U contains neither a segment of the inner circle, nor a segment of the outer circle.

Task E4.1.6. Draw the following subsets U of the cylinder S1 × I, and decide whether
or not they belong to OS1×I .

(1) S1 × {1}.

(2) U × {0}, where U is the subset of S1 given by{
(x, y) ∈ S1 | −1

4 < y < 1
4

}
.

(3) U ×
]

1
4 ,

1
2

[
, where U is the subset of S1 given in (2).
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(4) {(0, 1)} × I.

(5) S1 ×
]

3
4 , 1
]
.

(6)
(
U0 ×

]
1
4 ,

1
2

[)
∪
(
U1 ×

]
1
2 ,

3
4

[)
, where U0 is the subset of S1 given by{

(x, y) ∈ S1 | 1
4 ≤ x <

1
2

}
,

and U1 is the subset of S1 given by{
(x, y) ∈ S1 | −1

2 < x < −1
4

}
.

(7) (U0 × I) ∪
(
U1 ×

]
1
2 ,

3
4

[)
, where U0 is the subset of S1 given by{

(x, y) ∈ S1 | 1
8 < x < 1

4

}
and U1 is the subset of S1 given in (6).

Task E4.1.7. Let X be the set {a, b, c}. Let OX denote the topology on X given by

{∅, {b}, {a, b}, {b, c}, X} .

Let Y be the set {a′, b′, c′, d′, e′}. Let OY denote the topology on Y given by{
∅, {a′}, {e′}, {a′, e′}, {b′, c′}, {a′, b′, c′}, {b′, c′, e′}, {a′, b′, c′, e′}, {b′, c′, d′, e′}, Y

}
.

Which of the following maps

X Y
f

are continuous?

(1) a 7→ d′, b 7→ e′, c 7→ d′.

(2) a 7→ e′, b 7→ e′, c 7→ c′.

(3) a 7→ c′, b 7→ a′, c 7→ d′.

(4) a 7→ b′, b 7→ c′, c 7→ d′.

Remark E4.1.8. It may save you some work to appeal to Task E4.2.5.
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E4.2. For a deeper understanding

Definition E4.2.1. Let (X,O) be a topological space. Let B be a set of subsets of X
which belong to O. Then B is a basis for (X,O) if, for every subset of U of X which
belongs to O, there is a set {Uj}j∈J of (possibly infinitely many) subsets of X which
belong to B such that U =

⋃
j∈J Uj .

Task E4.2.2. Let B denote the set of open intervals. Prove that B is a basis for (R,OR).

Task E4.2.3. Let

B = {]x− ε, x+ ε[ | x, ε ∈ R and ε > 0} .

Prove that B is a basis for (R,OR).

Remark E4.2.4. You may find it a little difficult at first to find the idea needed to
accomplish Tasks E4.2.2 and E4.2.3. Don’t worry if so, feel free to ask me about it. The
idea will be used in different forms several times in the course.

Task E4.2.5. Let (X,OX) and (Y,OY ) be topological spaces. Let B be a basis for
(Y,OY ). Prove that a map

X Y
f

is continuous if and only if f−1(U) belongs to OX for every subset U of Y which belongs
to B.

Corollary E4.2.6. Let (X,OX) be a topological space. A map

X R
f

is continuous with respect to the standard topology OR on R if and only if f−1 (]a, b[)
belongs to OX , for every open interval ]a, b[.

Proof. Follows immediately from Task E4.2.2 and Task E4.2.5.

Definition E4.2.7. A map

R R
f

is continuous in the ε-δ sense if, for all x, c, ε ∈ R with ε > 0, there is a δ ∈ R with δ > 0
such that, if |x− c| < δ, then |f(x)− f(c)| < ε.

Remark E4.2.8. This is the notion of a continuous map that you have met in earlier
courses.
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Task E4.2.9. Prove that a map

R R
f

is continuous with respect to the standard topology OR on both copies of R if and only
if it is continuous in the ε − δ sense. You may find it helpful to appeal to Task E4.2.3
and to Task E4.2.5.

Definition E4.2.10. Let (X,O) be a topological space. Let S be a set of subsets of X
which belong to O. Let B denote the set of subsets U of X such that

U =
⋂
j∈J

Uj ,

for a set {Uj}j∈J of subsets of X which belong to S, where J is finite. Then S is a
subbasis for (X,O) if B is a basis for (X,O).

Task E4.2.11. Let (X,OX) and (Y,OY ) be topological spaces. Let S be a subbasis for
(Y,OY ). Prove that a map

X Y
f

is continuous if and only if f−1(U) belongs to OX for every subset U of Y which belongs
to S. You may wish to appeal to Task E4.2.5.

Task E4.2.12. Let S denote the union of the set

{]−∞, x[ | x ∈ R}

and the set

{]x,∞[ | x ∈ R} .

Prove that S is a subbasis for (R,OR). You may wish to appeal to Task E4.2.2.

E4.3. Exploration — continuity for metric spaces

Definition E4.3.1. Let (X, dX) and (Y, dY ) be metric spaces. A map

X Y
f

is continuous in the metric sense if, for all x ∈ X, and all ε ∈ R with ε > 0, there is a
δ ∈ R with δ > 0 such that f (Bδ(x)) is a subset of Bε (f(x)).
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Task E4.3.2. Let (X, d) be a metric space. Prove that for any x which belongs to X,
any ε ∈ R such that ε > 0, and any x′ which belongs to Bε(x), there is a δ ∈ R such that
δ > 0, and such that Bδ(x

′) is a subset of Bε(x). You may wish to let δ be ε− d(x, x′).

x

ε

x′

d(x, x′)

δ

You may then wish to observe that, for every x′′ which belongs to Bδ(x), the following
holds, by definition of d.

d(x, x′′) ≤ d(x, x′) + d(x′, x′′)

< d(x, x′) + δ

= d(x, x′) + ε− d(x, x′)

= ε.

Task E4.3.3. Let (X, dX) and (Y, dY ) be metric spaces. Let OdX be the topology on
X corresponding to dX of Task E3.4.9, and let OdY be the topology on Y corresponding
to dY . Prove that a map

X Y
f

is continuous if and only if it is continuous in the metric sense. You may wish to proceed
as follows.

(1) Suppose that f is continuous in the metric sense. Suppose that U belongs to OdY .
Suppose that x belongs to f−1(U). By definition of OdY , observe that there is an
ε ∈ R with ε > 0 such that Bε (f(x)) is a subset of U .

(2) Since f is continuous in the metric sense, there is a δ ∈ R with δ > 0 such that
f (Bδ(x)) is a subset of Bε (f(x)). Deduce that f (Bδ(x)) is a subset of U , and thus
that Bδ(x) is a subset of f−1(U).
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(3) By definition of OdX , we have that Bδ(x) belongs to OdX .

(4) By Task E8.3.1, deduce from (2) and (3) that f is continuous.

(5) Suppose instead that f is continuous. Let ε ∈ R be such that ε > 0. Suppose that
x belongs to X. By Task E4.3.2, for every y which belongs to Bε (f(x)), there is a
ζ ∈ R with ζ > 0 such that Bζ(y) is a subset of Bε (f(x)). By definition of OdY , we
have that Bζ(y) belongs to OdY . By Task E8.3.1, deduce that Bε (f(x)) belongs to
OdY .

(6) Since f is continuous, deduce that f−1 (Bε (f(x))) belongs to OdX .

(7) By definition of OdX , deduce that there is a δ ∈ R with δ > 0 such that Bδ(x) is
a subset of f−1 (Bε (f(x))).

(8) Deduce that f (Bδ(x)) is a subset of Bε (f(x)). Conclude that f is continuous in
the metric sense.

Definition E4.3.4. Let X be a set. A metric d on X is symmetric if, for all x0 and x1

which belong to X, we have that d(x0, x1) = d(x1, x0).

Definition E4.3.5. A metric space (X, d) is symmetric if d is symmetric.

Definition E4.3.6. Let (X, d) be a metric space. Let A0 and A1 be subsets of X. The
distance from A0 to A1 with respect to d is

inf {d(x0, x1) | x0 ∈ A0 and x1 ∈ A1} .

Notation E4.3.7. Let (X, d) be a metric space. Let A0 and A1 be subsets of X. We
denote the distance from A0 to A1 with respect to d by d(A0, A1). Suppose that x
belongs to X, and that A is a subset of X. We shall denote d ({x}, A) simply by d(x,A).

Remark E4.3.1. Let (X, d) be a symmetric metric space. Let A be a subset of X.
Suppose that a belongs to A. By (1) of Definition E3.4.2, we have that d(a,A) = 0.

Task E4.3.8. Let (X, d) be a symmetric metric space. Let A be a subset of X. Suppose
that x belongs to X. Let X be equipped with the topology Od corresponding to d of
Task E3.4.9. Prove that the map

X R
d(−, A)

given by x 7→ d(x,A) is continuous. You may wish to proceed as follows.

(1) By Task E3.4.12, we have that OR = OdR . By Task E4.3.3, it therefore suffices to
demonstrate that d(−, A) is continuous in the metric sense.

(2) Suppose that a belongs to A. By definition of d, we have that d(y, a) ≤ d(y, x) +
d(x, a). Since d(y,A) ≤ d(y, a), we deduce that d(y,A) ≤ d(y, x) + d(x, a).
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(3) Deduce that d(x, a) ≥ d(y,A) − d(y, x). Since this inequality holds for all a
which belong to A, deduce that d(x,A) ≥ d(y,A)− d(y, x). Deduce that d(y,A) ≤
d(x,A) + d(y, x).

(4) Carrying out exactly the same argument, but swapping x and y, observe that
d(y,A) ≥ d(x,A)− d(x, y).

(5) Let ε ∈ R be such that ε > 0. Suppose that d(x, y) < ε. Deduce from (3), (4),
and the fact that d is symmetric, that

d(x,A)− ε ≤ d(y,A) ≤ d(x,A) + ε.

(6) Deduce from (5) that d (Bε(x), A) is a subset of Bε (d(x,A)). Conclude that
d(−, A) is continuous in the metric sense, as required.
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5. Monday 20th January

5.1. Geometric examples of continuous maps

Remark 5.1.1. Most of our continuous maps between geometric examples of topological
spaces will be constructed from polynomial maps

R R

in ‘canonical’ ways: by restrictions, products, and quotients. Don’t worry about this for
now. We shall take it for granted, leaving details for the exercises, and instead focus on
developing a geometric feeling for continuity.

Example 5.1.2. Let

D2 × I D2
f

be given by (x, y, t) 7→ ((1− t)x, (1− t)y). Then f is continuous. To prove this is Task
E5.2.6.

Remark 5.1.3. We may think of f as ‘shrinking D2 onto its centre’, as t moves from 0
to 1.

We can picture the image of D2 × {t} under f as follows, as t moves from 0 to 1.

0 1
4

1
2

3
4 1
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Example 5.1.4. Let k ∈ R. There is a continuous map

I S1
f

which can be thought of as travelling k times around a circle, starting at (0, 1). To
construct f rigorously is the topic of Task E5.2.7.

Remark 5.1.5. Let us picture f for a few values of k.

(1) Let k = 1. Then we travel exactly once around S1.

� Don’t be misled by the picture. The path really travels around the circle, not
slightly outside it.

We may picture f ([0, t]) as t moves from 0 to 1 as follows.

0 1
4

1
2

3
4 1

Recall from Examples 4.1.4 that a typical open subset U of S1 is an ‘open arc’.

(

)

We have that f−1(U) is an open interval as follows.
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0 1
4

1
2

3
4 1

( )

In particular, f−1(U) belongs to OI . Thus, even though we have not yet rigorously
constructed f , we can intuitively believe that it is continuous.

(2) Let k = 2. Then we travel exactly twice around S1.

� Again, don’t be misled by the picture. The path really travels twice around the
circle, thus passing through every point on the circle twice, not in a spiral outside
the circle.

We may picture f ([0, t]) as t moves from 0 to 1 as follows.

0 1
4

1
2

3
4 1

Let U denote the subset of S1 given by the ‘open arc’ depicted below.

(

)
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Then f−1(U) is a disjoint union of open intervals as follows.

0 1
4

1
2

3
4 1

( ) ( )

In particular, f−1(U) belongs to OI . Thus, again, even though we have not rigor-
ously constructed f , we can believe intuitively that it is continuous.

(3 Let k = 3
2 . Then we travel exactly one and a half times around S1.

We may picture f ([0, t]) as t moves from 0 to 1 as follows.

0 1
4

1
2

3
4 1

Let U denote the subset of S1 given by the ‘open arc’ depicted below.

(

)

Then f−1(U) is a disjoint union of open intervals as follows.
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0 1
4

1
2

3
4 1

( ) ( )

In particular, f−1(U) belongs to OI . Thus, once more, even though we have not
rigorously constructed f , we can believe intuitively that it is continuous.

Example 5.1.6. Let

I I
f

be given by t 7→ 1− t. Then f is continuous, by Task E5.3.14.

Remark 5.1.7. We may picture f as follows.

0

0

1

1

Let U denote the subset of I given by the following open interval.

0 1

( )

Then f−1(U) is the following open interval.

0 1

( )

In particular, f−1(U) belongs to OI . Thus, even though this is not quite a proof yet, we
can intuitively believe that f is continuous.

Example 5.1.8. There is a map

I S1
f

travels around the circle at half speed from (0, 1) to (1, 0) for 0 ≤ t ≤ 1
2 , and at normal

speed from (0,−1) to (0, 1) for 1
2 < t ≤ 1. It is not continuous. To construct f rigorously,

and to prove that it is not continuous, is the topic of Task E5.2.8.
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Remark 5.1.9. We may picture f as follows.

Let U denote the subset of S1 given by the ‘open arc’ depicted below.

(
)

Then f−1(U) is a half open interval as follows.

0 1
4

1
2

3
4 1

( ]

In particular, f−1(U) does not belong to OI . Thus we can see intuitively that f is not
continuous.

Example 5.1.10. There is a map

I D2
f

which begins at
(
−1

2 ,
√

3
2

)
, travels around an arc of radius 1

4 centred at
(
−3

4 , 0
)

to(
−1

2 ,−
√

3
2

)
, jumps to

(
1
2 ,
√

3
2

)
, and then travels around an arc of radius 1

4 centred at(
3
4 , 0
)

to
(

1
2 ,−

√
3

2

)
. It is not continuous. To construct f rigorously, and to prove that

it is not continuous, is the topic of Task E5.2.9.

Remark 5.1.11. We may picture f as follows.
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Let U denote the subset of D2 given by the ‘open rectangle’ depicted below.

Then f−1(U) is a half open interval as follows.

0 1
4

1
2

3
4 1

( ]

In particular, f−1(U) does not belong to OI . Thus we can see intuitively that f is not
continuous.

Remark 5.1.12. Intuitively, continuous maps cannot ‘jump’ !

Example 5.1.13. Let

R D2
f

be the map given by

x 7→


(−1

2 , 0) for x ≤ −1
2 ,

(x, 0) for −1
2 ≤ x ≤ 0,

(0, x) for 0 ≤ x ≤ 1
2 ,

(0, 1
2) for x ≥ 1

2 .

Then f is continuous. To prove this is the topic of Task E5.2.10.

Remark 5.1.14. In particular, continuous maps can have ‘sharp edges’. In differential
topology, maps are required to moreover be smooth: sharp edges are disallowed! The
courses MA3402 Analyse p̊a Mangfoldigheter and TMA4190 Mangfoldigheter both lead
towards differential topology.
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5.2. Inclusion maps are continuous

Terminology 5.2.1. Let X be a set, and let A be a subset of X. We refer to the map

A X
i

given by x 7→ x as an inclusion map.

Proposition 5.2.2. Let (X,OX) be a topological space. Let A be a subset of X, and let
A be equipped with the subspace topology OA with respect to (X,OX). The inclusion
map

A X
i

is continuous.

Proof. Let U be a subset of X which belongs to OX . Then i−1(U) = A∩U . By definition
of OA, we have that A∩U belongs to OA. We conclude that i−1(U) belongs to OA.

Notation 5.2.3. Let X, Y , and Z be sets. Let

X Y
f

and

Y Z
g

be maps. We denote by

X Z
g ◦ f

the composition of f and g, given by x 7→ g (f(x)).

5.3. Compositions of continuous maps are continuous

Proposition 5.3.1. Let (X,OX), (Y,OY ), and (Z,OZ) be topological spaces. Let

X Y
f

and

Y Z
g

be continuous maps. The map
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X Z
g ◦ f

is continuous.

Proof. Let U be a subset of Z which belongs to OZ . Then

(g ◦ f)−1(U) = {x ∈ X | g (f(x)) ∈ U}
=
{
x ∈ X | f(x) ∈ g−1(U)

}
= f−1

(
g−1(U)

)
.

Since g is continuous, we have that g−1(U) belongs to OY . We deduce, since f is
continuous, that f−1

(
g−1(U)

)
belongs to OX . Thus (g ◦ f)−1(U) belongs to OX .

5.4. Projection maps are continuous

Notation 5.4.1. Let X and Y be sets. We denote by

X × Y X
p1

the map given by (x, y) 7→ x. We denote by

X × Y Y
p2

the map given by (x, y) 7→ y.

Terminology 5.4.2. We refer to p1 and p2 as projection maps.

Proposition 5.4.3. Let (X,OX) and (Y,OY ) be topological spaces. Let X × Y be
equipped with the product topology OX×Y . Then

X × Y X
p1

and

X × Y Y
p2

are continuous.

Proof. Suppose that UX is a subset of X which belongs to OX . Then

p−1
1 (UX) = UX × Y.

We have that UX × Y belongs to OX×Y . Thus p1 is continuous.
Suppose now that UY is a subset of Y which belongs to OY . Then

p−1
2 (UY ) = X × UY .

We have that X × UY belongs to OX×Y . Thus p2 is continuous.
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Remark 5.4.4. We can think of

I × I I
p1

as the map (x, y) 7→ (x, 0). We can picture this as follows.

(0, 0) (1, 0)

(0, 1) (1, 1)

We can think of

I × I I.
p2

as the map (x, y) 7→ (0, y). We can picture this as follows.

(0, 0) (1, 0)

(0, 1) (1, 1)
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E5.1. Exam questions

Remark E5.1.1. You may find it helpful to carry out Tasks E5.2.3 – E5.2.5 before
attempting the tasks in this section.

Terminology E5.1.2. Let X be a set. We refer to the map

X X

given by x 7→ x as the identity map from X to itself.

Task E5.1.3. Let (X,OX) be a topological space. Prove that the identity map

X X
id

is continuous.

Terminology E5.1.4. Let X and Y be sets. A map

X Y
f

is constant if f(x) = f(x′) for all x, x′ ∈ X.

Task E5.1.5. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a constant map. Prove that f is continuous. You may wish to proceed as follows.

(1) Observe that if f is constant, then there is a y ∈ Y such that f(x) = y for all
x ∈ X.

(2) Let U be a subset of Y which belongs to OY . Determine f−1(U) in the cases that
y ∈ U , and in the case that y 6∈ U .

Terminology E5.1.6. Let X and Y be sets, and let A be a subset of X. Let

X Y
f
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be a map. The restriction of f to A is the map

A Y

given by x 7→ f(x).

Remark E5.1.7. In other words, the restriction of f to A is the map

A Y,
f ◦ i

where

A X
i

is the inclusion map.

Task E5.1.8. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a continuous map. Let A be a subset of X, and let A be equipped with the sub-
space topology with respect to (X,OX). Prove that the restriction of f to A defines a
continuous map

A Y.

Task E5.1.9. Let (X,OX) and (Y,OY ) be topological spaces. Let A be a subset of Y ,
and let A be equipped with the subspace topology OA with respect to (Y,OY ). Prove
that if

X Y
f

is a continuous map such that f(X) ⊂ A, then the map

X A

given by x 7→ f(x) is continuous.

Task E5.1.10. Let (X,OX) and (Y,OY ) be topological spaces. Let A be a subset of Y ,
and let A be equipped with the subspace topology OA with respect to (Y,OY ). Prove
that if

X A
f

is a continuous map, then the map
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X Y

given by x 7→ f(x) is continuous.

Terminology E5.1.11. Let X be a set. We refer to the map

X X ×X∆

given by x 7→ (x, x) as the diagonal map.

Task E5.1.12. Let (X,OX) be a topological space. Let X ×X be equipped with the
product topology OX×X with respect to two copies of (X,OX). Prove that

X X ×X∆

is continuous. You may wish to proceed as follows.

(1) Let U0 and U1 be subsets of X which belong to OX . Prove that ∆−1(U0 × U1)
belongs to OX .

(2) Let U be a subset of X ×X which belongs to OX×X . Prove that ∆−1(U) belongs
to OX , by appealing to (1) and to Task E8.3.1.

Task E5.1.13. Let (X,OX) and (Y,OY ) be topological spaces. Prove that a map

X Y
f

is continuous if and only if f−1(V ) is closed with respect OX , for every subset V of Y
which is closed with respect to OY .

Task E5.1.14. Let X be a set. Let OX be the discrete topology on X. Let (Y,OY ) be
a topological space. Prove that any map

X Y
f

is continuous.

Task E5.1.15. Let (X,OX) be a topological space. Let Y be a set. Let OY be the
indiscrete topology on X. Prove that any map

X Y
f

is continuous.

81



E5. Exercises for Lecture 5

E5.2. In the lecture notes

Task E5.2.1. Let X, Y , and Z be sets. Let

X Y
f

and

Y Z
g

be maps. Prove that

{x ∈ X | g (f(x)) ∈ U} =
{
x ∈ X | f(x) ∈ g−1(U)

}
.

This was appealed to in the proof of Proposition 5.3.1.

Task E5.2.2. Let (X,OX and (Y,OY ) be topological spaces.

(1) Let UX be a subset of X which belongs to OX . Check that you understand why
UX × Y belongs to OX×Y .

(2) Let UY be a subset of Y which belongs to OY . Check that you understand why
X × UY belongs to OX×Y .

These observations were appealed to in the proof of Proposition 5.4.3.

Task E5.2.3. Do the same as in Task E2.2.2 for the proof of Proposition 5.2.2.

Task E5.2.4. Do the same as in Task E2.2.2 for the proof of Proposition 5.3.1.

Task E5.2.5. Do the same as in Task E2.2.2 for the proof of Proposition 5.4.3.

Task E5.2.6. Prove that the map

D2 × I D2
f

of Example 5.1.2 is continuous. You may wish to proceed as follows.

(1) Express the map

R3 R
f0

given by (x, y, t) 7→ (1− t)x as a composition of four maps.
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(I) The map

R3 R2

given by (x, y, t) 7→ (x, t).

(II) The twist map

R2 R2

given by (x, y) 7→ (y, x).

(III) The map

R2 R2

given by (x, y) 7→ (1− x, y).

(IV) The map

R2 R
×

given by (x, y) 7→ xy.

Appealing to Proposition 5.4.3, Task E5.3.17, Task E5.3.19, Task E5.3.14, Task
E5.3.11, and Proposition 5.3.1, deduce that f0 is continuous.

(2) In a similar way, prove that the map

R3 R
f1

given by (x, y, t) 7→ (1− t)y is continuous.

(3) View D2 × I as equipped with the subspace topology with respect to (R3,OR3).
Appealing to Task E5.1.8, deduce from (1) that the map

D2 × I R
f0

given by (x, y, t) 7→ (1− t)x is continuous, and deduce from (2) that the map

D2 × I R
f1

given by (x, y, t) 7→ (1− t)y is continuous,
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(4) Appealing to Task E5.3.17, deduce from (3) that the map

D2 × I R2

given by (x, y, t) 7→ ((1− t)x, (1− t)y) is continuous.

(5) Appealing to Task E5.1.9, conclude from (4) that f is continuous.

Task E5.2.7. Let k ∈ R. Construct a continuous map

I S1

which travels around the circle k times, as in Example 5.1.4. You may wish to proceed
as follows.

(1) By Task E5.3.14, observe that the map

I [0, k]

given by t 7→ kt is continuous.

(2) By Task E5.3.27 and Task E5.1.8, observe that the map

[0, k] S1

given by t 7→ φ(t) is continuous, where

R S1
φ

is the map of Task E5.3.27.

(3) Appeal to Proposition 5.3.1.

Task E5.2.8. Use the map

R S1
φ

of Task E5.3.27 to construct the map

I S1
f

of Example 5.1.8. Prove that f is not continuous.
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Task E5.2.9. Use the map

R S1
φ

of Task E5.3.27 to construct the map

I D2
f

of Example 5.1.10. Prove that f is not continuous.

Task E5.2.10. Let

R D2
f

be the map of Example 5.1.13. Prove that f is continuous. You may wish to proceed as
follows.

(1) By Task E5.1.5, observe that the map

[
−∞,−1

2

[
D2

given by x 7→ (−1
2 , 0) is continuous.

(2) By Task E5.1.3, Task E5.1.5, and Task E5.3.17, observe that the map

[
−1

2 , 0
]

D2

given by x 7→ (x, 0) is continuous.

(3) By Task E5.1.3, Task E5.1.5, and Task E5.3.17, observe that the map

[
0, 1

2

]
D2

given by x 7→ (0, x) is continuous.

(4) By Task E5.1.5, observe that the map

]
1
2 ,∞

]
D2

given by x 7→ (0, 1
2) is continuous.

(5) Appeal to (2) of Task E5.3.23.
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E5.3. For a deeper understanding

Assumption E5.3.1. Throughout this section, let R be equipped with the standard
topology OR.

Remark E5.3.2. The proofs needed for Tasks E5.3.5 – E5.3.7 and Task E5.3.9 all follow
the pattern of the proof of the following proposition, which is given to help you along.

Proposition E5.3.3. Let (X,OX) be a topological space. Let

X R
f

be a continuous map. Then the map

X R
|f |

given by x 7→ |f(x)| is continuous.

Proof. By Corollary E4.2.6, to prove that f is continuous, it suffices to prove that
|f |−1 (]a, b[) belongs to OX , for every open interval ]a, b[. We have that

|f |−1 (]a, b[) =
{
x′ ∈ X |

∣∣f(x′)
∣∣ ∈ ]a, b[

}
=
{
x′ ∈ X | f(x′) ∈ ]a, b[

}
∪
{
x′ ∈ X | −f(x′) ∈ ]a, b[

}
=
{
x′ ∈ X | f(x′) ∈ ]a, b[

}
∪
{
x′ ∈ X | f(x′) ∈ ]−b,−a[

}
= f−1 (]a, b[) ∪ f−1 (]−b,−a[) .

Both ]a, b[ and ]−b,−a[ belong to OR. Since f is continuous, we deduce that both
f−1 (]a, b[) and f−1 (]−b,−a[) belong to OX . Since OX is a topology on X, this implies
that

f−1 (]a, b[) ∪ f−1 (]−b,−a[)

belongs to OX . Hence |f |−1 (]a, b[) belongs to OX .

Remark E5.3.4. In a nutshell, the proof of Proposition E5.3.3 proceeds by expressing∣∣f−1
∣∣ (]a, b[) as a union of inverse images under f of subsets of R which belong to OR. It

is this idea that is also at the heart of the proofs needed for Tasks E5.3.5 – E5.3.7 and
Task E5.3.9.

Task E5.3.5. Let (X,OX) be a topological space. Let

X R
f

be a continuous map. Prove that, for any k ∈ R, the map

X R
kf

given by x 7→ k · f(x) is continuous. You may wish to proceed by considering separately
the cases k = 0, k > 0, and k < 0.

86



E5.3. For a deeper understanding

Task E5.3.6. Let (X,OX) be a topological space. Let

X R
f

g

be continuous maps. Prove that the map

X R
f + g

given by x 7→ f(x) + g(x) is continuous. You may wish to proceed as follows.

(1) Observe that, by Task E4.2.12 and Task E4.2.11, to prove that f+g is continuous,
it suffices to prove that for any y ∈ R, the sets

(f + g)−1 (]−∞, y[)

and

(f + g)−1 (]y,∞[)

belong to OX .

(2) Prove that {x ∈ X | f(x) + g(x) < y} is equal to⋃
y′∈R

({
x ∈ X | f(x) < y − y′

}
∩
{
x ∈ X | g(x) < y′

})
,

and that {x ∈ X | f(x) + g(x) > y} is equal to⋃
y′∈R

({
x ∈ X | f(x) > y − y′

}
∩
{
x ∈ X | g(x) > y′

})
.

Task E5.3.7. Let (X,OX) be a topological space. Let

X R
f

be a continuous map, with the property that f(x) ≥ 0 for all x ∈ X. Prove that the
map

X R
f2

given by x 7→ f(x) · f(x) is continuous.
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Task E5.3.8. Let

X R
f

g

be continuous maps. Prove that the map

X R
fg

given by x 7→ f(x) · g(x) is continuous. You may wish to proceed as follows.

(1) Observe that fg is
1
4

(
|f + g|2 − |f − g|2

)
.

(2) Appeal to Proposition E5.3.3 and Tasks E5.3.5 – E5.3.7.

Task E5.3.9. Let (X,OX) be a topological space. Let

X R
f

be a continuous map. Suppose that f(x) 6= 0 for all x ∈ X. Prove that the map

X R
1
f

given by x 7→ 1
f(x) is continuous. You may wish to proceed as follows.

(1) Observe that, by Task E4.2.12 and Task E4.2.11, to prove that 1
f is continuous,

it suffices to prove that for any y ∈ R, the sets(
1

f

)−1

(]−∞, y[)

and (
1

f

)−1

(]y,∞[)

belong to OX .

(2) Prove that, for all y ∈ R, the set{
x ∈ X | 1

f(x)
< y

}
is equal to the union of

{x ∈ X | f(x) > 0} ∩ {x ∈ X | (yf) (x) > 1}

and
{x ∈ X | f(x) < 0} ∩ {x ∈ X | (yf) (x) < 1} .

88



E5.3. For a deeper understanding

(3) Prove that, for all y ∈ R, the set{
x ∈ X | 1

f(x)
> y

}
is equal to the union of

{x ∈ X | f(x) > 0} ∩ {x ∈ X | (yf) (x) < 1}

and
{x ∈ X | f(x) < 0} ∩ {x ∈ X | (yf) (x) > 1} .

(4) Appeal to Task E5.3.5.

Task E5.3.10. Let (X,OX) be a topological space. Let

X R
f

g

be continuous maps. Suppose that g(x) 6= 0 for all x ∈ X. Prove that the map

X R
f
g

given by x 7→ f(x)
g(x) is continuous. You may wish to appeal to two of the previous tasks.

Task E5.3.11. Let R2 be equipped with the topology OR2 . Prove that the map

R2 R
×

given by (x, y) 7→ xy is continuous. You may wish to appeal to Proposition 5.4.3, and
to Task E5.3.8.

Task E5.3.12. Let R2 be equipped with the topology OR2 . Prove that the map

R× R R
+

given by (x, y) 7→ x+ y is continuous. You may wish to appeal to Proposition 5.4.3, and
to Task E5.3.6.

Terminology E5.3.13. Let X and Y be subsets of R. Let

X Y
f

be a map given by
x 7→ knx

n + kn−1x
n−1 + . . .+ k1x1 + k0,

where ki ∈ R for all 0 ≤ i ≤ n. We refer to f as a polynomial map.
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Task E5.3.14. Let X be a subset of R, equipped with the subspace topology OX with
respect to (R,OR). Let Y also be a subset of R, equipped with the subspace topology
OY with respect to (R,OR). Prove that every polynomial map

X Y
f

is continuous. You may wish to proceed as follows.

(1) Demonstrate that a polynomial map

R R
f

is continuous. For this, you may wish to proceed by induction, appealing to Task
E5.1.3, Task E5.3.5, Task E5.3.8, and Task E5.3.6.

(2) Appeal to Task E5.1.8 and to Task E5.1.9.

Corollary E5.3.15. Let X be a subset of R, equipped with the subspace topology
OX with respect to (R,OR). Let Y also be a subset of R, equipped with the subspace
topology OY with respect to (R,OR). Let

X Y
f

be a map given by x 7→ g0(x)
g1(x) , where g1(x) 6= 0 for all x ∈ X. Suppose that g0 and g1 are

polynomial maps. Then f is continuous.

Proof. We can view f as a map

X R.
f ′

It follows immediately from Task E5.3.14 and Task E5.3.10 that f ′ is continuous. By
Task E5.1.9, we conclude that f is continuous.

Task E5.3.16. Let (X,OX) be a topological space. Let

X R
f

be a continuous map such that f(x) ≥ 0 for all x ∈ X. Prove that, for any n ∈ N, the
map

X R
n
√
f

given by x 7→ n
√
f(x), where n

√
f(x) denotes the positive nth root of f(x), is continuous.
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Task E5.3.17. Let (X0,OX0), (X1,OX1), (Y0,OY0), and (Y1,OY1) be topological spaces.
Let

X0 Y0

f0

and

X1 Y1

f1

be continuous maps. Prove that the map

X0 ×X1 Y0 × Y1

f0 × f1

given by (x0, x1) 7→ (f0(x0), f1(x1)) is continuous.

Terminology E5.3.18. Let X and Y be sets. We refer to the map

X × Y Y ×Xτ

given by (x, y) 7→ (y, x) as the twist map.

Task E5.3.19. Let (X,OX) and (Y,OY ) be topological spaces. Prove that the twist
map

X × Y Y ×Xτ

is continuous. You may wish to appeal to Task E5.3.17.

Task E5.3.20. Let (X,OX), (Y0,OY0), and (Y1,OY1) be topological spaces. Let

X Y0

f0

and

X Y1

f1

be continuous maps. Prove that the map

X Y0 × Y1

f0 × f1

given by x 7→ (f0(x), f1(x)) is continuous. You may wish to appeal to Task E5.1.12 and
Task E5.3.17.
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Task E5.3.21. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a continuous map. Let A be a subset of Y , and let A be equipped with the subspace
topology with respect to (Y,OY ). Let

A Y
i

be the inclusion map. Prove that a map

X A
f

is continuous if and only if the map

X Y
i ◦ f

is continuous.

Notation E5.3.22. Let X and Y be sets. Let {Aj}j∈J be a set of subsets of X such
that X =

⋃
j∈J Aj . Suppose that, for every j ∈ J , we have a map

Aj Y.
fj

Moreover, suppose that, for all j0, j1 ∈ J , the restriction of fj0 to Aj0 ∩ Aj1 is equal to
the restriction of fj1 to Aj0 ∩Aj1 . We then obtain a map

X Y

given by x 7→ fj(x) if x ∈ Aj .

Task E5.3.23. Let (X,OX) and (Y,OY ) be topological spaces. Let {Aj}j∈J be a set
of subsets of X such that X =

⋃
j∈J Aj . For every j ∈ J , let Aj be equipped with the

subspace topology with respect to (X,OX). Suppose that, for every j ∈ J , we have a
continuous map

Aj Y.
fj

Moreover, suppose that, for all j0, j1 ∈ J , the restriction of fj0 to Aj0 is equal to the
restriction of fj1 to Aj1 . Let

X Y
f

denote the map of Notation E5.3.22 corresponding to the maps {fj}j∈J .
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(1) Suppose that Aj belongs to OX for every j ∈ J . Prove that f is continuous. You
may wish to appeal to Task E2.3.4.

(2) Suppose that {Aj}j∈J is locally finite with respect to OX , and that Aj is closed
with respect to OX , for every j ∈ J . Prove that f is continuous. You may wish to
appeal to Task E8.3.9.

(3) Suppose that J finite. Give an example to demonstrate that if we do not assume
that Aj is closed with respect to OX for every j ∈ J , then f is not necessarily
continuous.

(4) Suppose that Aj is closed with respect to OX for every j ∈ J . Given an example
to demonstrate that, if we do not assume that {Aj}j∈J is locally finite with respect
to OX , then f is not necessarily continuous.

Remark E5.3.24. Taking into account Remark E8.3.6, we have that if J is finite, and
Aj is closed with respect to OX , for every j ∈ J , then f is continuous.

Remark E5.3.25. The result of (1) and (2) of Task E5.3.23 is sometimes known as the
glueing lemma or pasting lemma. Continuous maps constructed by means of (1) and (2)
of Task E5.3.23 are sometimes said to be defined piecewise.

Notation E5.3.26. Given y ∈ [−1, 1], let

ky =
√

1− y2.

Here we take the positive square root. We have that ‖(ky, y)‖ = 1.

(0, y)

(0,−1)

(0, 1)

(ky, y)

Let

R S1
φ

be the map defined as follows.
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(1) Suppose that x ∈
[
0, 1

2

]
. Let y = 1 − 4x. We define φ(x) to be (ky, y). We can

picture φ on
[
0, 1

2

]
as follows.

(2) Suppose that x ∈
[

1
2 , 1
]
. Let y = 4x− 3. We define φ(x) to be (−ky, y). We can

picture φ on [0, 1] as follows.

(3) Suppose that x ∈ [n, n + 1], for some n ∈ Z. We define φ(x) to be φ(x− n). We
can picture φ on [0, 2], for instance, as follows.

Task E5.3.27. Prove that the map

R S1
φ

of Notation E5.3.26 is continuous. You may wish to proceed as follows.

(1) Let
[
0, 1

2

]
be equipped with the subspace topology with respect to (R,OR). Ob-

serve that by Task E5.3.14 and Task E5.3.16, the map

[
0, 1

2

]
R

f

given by y 7→ ky is continuous.
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(2) By Task E5.3.17, deduce from (1) that the map

[
0, 1

2

]
R2

f × id

given by y 7→ (ky, y) is continuous. By Task E5.1.9, deduce that the map

[
0, 1

2

]
S1

given by x 7→ φ(x) is continuous.

(3) Let
[

1
2 , 1
]

be equipped with the subspace topology with respect to (R,OR). As in
(1) and (2), demonstrate that the map[

1
2 , 1
]

S1

given by x 7→ φ(x) is continuous.

(4) Let the unit interval I be equipped with the topology OI . By (2) of Task E5.3.23,
deduce from (2) and (3) that the map

I S1

given by x 7→ φ(x) is continuous.

(5) Let n ∈ Z. Let [n, n+ 1] be equipped with the subspace topology with respect to
(R,OR). By Task E5.3.14, observe that the map

[n, n+ 1] I
g

given by x 7→ x− n is continuous.

(6) Let n ∈ Z. By Proposition 5.3.1, deduce from (4) and (5) that the map

[n, n+ 1] S1

given by x 7→ φ(x− n) is continuous.

(7) By (2) of Task E5.3.23, deduce from (6) that

R S1
φ

is continuous.
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Remark E5.3.28. The map φ allows us to construct paths around a circle without
using, for instance, trigonometric maps. Sine and cosine do define continuous maps, but
their construction, and the proof that they are continuous, is much more involved. We
shall explore this in a later task.

Task E5.3.29. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that x belongs
to X. Let X \ f−1 ({f(x)}) be equipped with the subspace topology OX\f−1({f(x)}) with
respect to (X,OX). Let

X Y
f

be a map. Suppose that f−1 ({f(x)}) is closed in X with respect to OX . Let Y \ {f(x)}
be equipped with the subspace topology OY \{f(x)} with respect to (Y,OY ). Suppose
that the map

X \ f−1 ({f(x)}) Y \ {f(x)}
g

given by x′ 7→ f(x′) is continuous. Prove that f is continuous. You may wish to proceed
as follows.

(1) Let V be a subset of Y which is closed with respect to OY . Suppose that f(x)
does not belong to V . Then V is a subset of Y \ {f(x)}. Thus f−1(V ) = g−1(V ).
Since g is continuous, deduce by Task ?? that f−1(V ) is closed in X with respect
to OX .

(2) Suppose that f(x) belongs to V . Then

X \ f−1(V ) = f−1 (Y \ V )

= g−1(Y \ V ).

Since V is closed in Y with respect to OY , we have that Y \V belongs to OY . Hence
Y \ V belongs to OY \{f(x)}. Since g is continuous, we thus have that g−1(Y \ V )
belongs to OX\f−1({f(x)}). Deduce that X \ f−1(V ) belongs to OX\f−1({f(x)}).

(3) Since f−1 ({f(x)}) is closed inX with respect toOX , we have thatX\f−1 ({f(x)})
belongs to OX . By Task E2.3.3 (1) and (2), deduce that X \f−1(V ) belongs to OX .
Thus we have that f−1(V ) is closed in X with respect to OX .

(3) By Task ??, conclude from (1) and (2) that f is continuous.
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6.1. Quotient topologies

Notation 6.1.1. Let X be a set, and let ∼ be an equivalence relation on X. We denote
by X/∼ the set

{[x] | x ∈ X}

of equivalence classes of X with respect to ∼.

Notation 6.1.2. We denote by

X X/∼π

the map given by x 7→ [x].

Terminology 6.1.3. We refer to π as the quotient map with respect to ∼.

Definition 6.1.4. Let (X,OX) be a topological space. and let ∼ be an equivalence
relation on X. Let OX/∼ denote the set of subsets U of X/∼ such that π−1(U) belongs
to OX .

Proposition 6.1.5. Let (X,OX) be a topological space, and let ∼ be an equivalence
relation on X. Then (X/∼,OX/∼) is a topological space.

Proof. We verify that each of the conditions of Definition 1.1.1 holds.

(1) We have that π−1(∅) = ∅. Since OX is a topology on X, we have that ∅ belongs
to OX . Thus ∅ belongs to OX/∼.

(2) We have that π−1(X/∼) = X. Since OX is a topology on X, we have that X
belongs to OX . Thus X belongs to OX .

(3) Let {Ui} be a set of (possibly infinitely many) subsets of X/∼ which belong to
OX/∼. By definition of OX/∼, we have that π−1(Ui) belongs to OX . Since OX is a
topology on X, we deduce that

⋃
i∈I π

−1(Ui) belongs to OX . We have that

π−1

(⋃
i∈I

Ui

)
=
⋃
i∈I

π−1(Ui).

Thus π−1
(⋃

i∈I Ui
)

belongs to OX . We conclude that
⋃
i∈I Ui belongs to OX/∼.
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(4) Let U0 and U1 be subsets of X/∼ which belong to OX/∼. By definition of OX/∼,
we have that π−1(U0) and π−1(U1) belong to OX . Since OX is a topology on X,
we deduce that π−1(U0) ∩ π−1(U1) belongs to OX . We have that

π−1 (U0 ∩ U1) = π−1(U0) ∩ π−1(U1).

Thus π−1 (U0 ∩ U1) belongs to OX . We conclude that U0 ∩ U1 belongs to OX/∼.

Remark 6.1.6. The proof of Proposition 6.1.5 does not appeal to anything specific to
X/∼ or to π. It relies only upon properties of π−1 which hold for any map.

Remark 6.1.7. Although we chose not to, it is possible to define the subspace and
product topologies in a similar way. To investigate this is the topic of Task E6.2.1 and
Task E6.2.2.

Terminology 6.1.8. Let (X,OX) be a topological space, and let ∼ be an equivalence
relation on X. We refer to OX/∼ as the quotient topology upon X/∼.

Remark 6.1.9. Let (X,OX) be a topological space, and let ∼ be an equivalence relation
on X. Let X/∼ be equipped with the quotient topology OX/∼. Then

X X/ ∼π

is continuous. This is immediate from the definition of OX/∼.

Remark 6.1.10. This introduces us to a more conceptual way to understand the defi-
nition of a subspace topology and of a product topology. The subspace topology ensures
exactly that an inclusion map is continuous. The product topology ensures exactly that
the projection maps are continuous. This is a consequence of Task E6.2.1 and Task
E6.2.2.

6.2. Finite example of a quotient topology

Example 6.2.1. Let X = {a, b, c} be a set with three elements. Let OX be the topology
on X given by

{∅, {a}, {c}, {a, b}, {a, c}, X} .
Let ∼ be the equivalence relation on X generated by a ∼ c. Then

X/∼ =
{
a′, b′

}
,

where a′ = [a] = [c] and b′ = [b]. The map

X X/∼π

is given by a 7→ a′, b 7→ b′, and c 7→ a′. In order to determine which subsets ofX/∼ belong
to OX/∼, we have to calculate their inverse images under π. We know from Proposition
6.1.5 that and ∅ and X/∼ belong to OX/∼. Thus only the following calculations remain.
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(1) We have that π−1 ({a′}) = {a, c}. Since {a, c} belongs to OX , we deduce that
{a′} belongs to OX/∼.

(2) We have that π−1 ({b′}) = {b}. Since {b} does not belong to OX , we deduce that
{b′} does not belong to OX/∼.

We conclude that
OX/∼ =

{
∅, {a′}, X

}
.

Remark 6.2.2. Throughout the course, we shall make use the notion of an equivalence
relation generated by a relation. A formal discussion can be found in A.4. However, you
can harmlessly ignore it!

The relations that we shall consider express all that is important about our equivalence
relations: which elements are to be identified with which, when we pass to X/∼. For
instance, in Example 6.2.1, the relation a ∼ c expresses that a is to be identified with c
when we pass to X/∼, and that no other identifications are to be made.

Formally, in order to construct X/∼, we have to ensure that the conditions of Defini-
tion A.4.3 are satisfied. It is this that we achieve by passing to the equivalence relation
generated by a relation. In full detail, the equivalence relation generated by a ∼ c is
given by a ∼ a, b ∼ b, c ∼ c, a ∼ c, and c ∼ a.

In all the examples which we shall consider, it is entirely straightforward to write
down the equivalence relation generated by our relation. Since this would be tedious,
and would not lend any insight into the corresponding quotient topology, we shall not
do so.

6.3. The quotient topology obtained by glueing together the
endpoints of I

Example 6.3.1. Let ∼ be the equivalence relation on I generated by 0 ∼ 1.

0 1

Then I/∼ is obtained by ‘glueing 0 to 1’. We may picture it as follows.

[0] = [1]
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Remark 6.3.2. Let U be the subset of I/∼ given by{
[t] | 1

4 < t < 5
12

}
.

[0] = [1]

(

)

U

Then π−1(U) is the open interval
]

1
4 ,

5
12

[
.

( )

1
4

5
12

π−1(U)

0 1

In particular, as in Example 2.3.3, we have that π−1(U) belongs to OI . Thus U belongs
to OI/∼.

Remark 6.3.3. Let U be the subset of I/∼ given by{
[t] | 0 ≤ t < 1

8

}
∪
{

[t] | 7
8 < t ≤ 1

}
.

In particular, we have that [0] = [1] ∈ U .

[0] = [1](
)

U

Then π−1(U) is
[
0, 1

8

[
∪
]

7
8 , 1
]
.
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[ ) ( ]

0 11
8

7
8

As in Example 2.3.4, we have that
[
0, 1

8

[
belongs to OI . As in Example 2.3.5, we have

that
]

7
8 , 1
]

belongs to OI . Thus π−1(U) belongs to OI . We conclude that U belongs to
OI/∼.

Remark 6.3.4. Let U be the subset of I/∼ given by{
[t] | 7

8 < t ≤ 1
}
.

[0] = [1]

[

)

U

Then π−1(U) is {0} ∪
]

7
8 , 1
]
.

( ]

0 17
8

The subset {0} ∪
]

7
8 , 1
]

of I does not belong to OI . Thus U does not belong to OI/∼.

� Let (X,OX) be a topological space, and let ∼ be an equivalence relation on X. Let
U be a subset of X which belongs to OX . Then π(U) does not necessarily belong

to OX/∼. The crucial point is that π−1 (π (U)) is not necessarily equal to U . Remark
6.3.4 demonstrates this, for we have the following.

(1) The subset U of I/∼ considered in Remark 6.3.4 is π
(]

7
12 , 1

])
.

(2) As in Example 2.3.5, we have that
]

7
8 , 1
]

belongs to OI .

(3) We have that π
(]

7
12 , 1

])
does not belong to OI/∼. In particular

π−1
(
π
(]

7
12 , 1

]))
= {0} ∪

]
7
8 , 1
]
,

which is not equal to
]

7
8 , 1
]
.

Remark 6.3.5. It is not a coincidence that we have depicted I/∼ as a circle! In a
sense which we shall define and investigate in the next lecture, (I/∼,OI/∼) is the ‘same’
topological space as (S1,OS1). To prove this is the topic of Task E7.3.10.
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6.4. Further geometric examples of quotient topologies

Example 6.4.1. Let ∼ be the equivalence relation on I2 generated by (t, 0) ∼ (t, 1), for
all t ∈ I.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Then I2/∼ is obtained by ‘glueing the upper horizontal edge of I2 to the lower horizontal
edge of I2’. We may picture it as follows.

[(0, 0)] = [(0, 1)] [(1, 0)] = [(1, 1)]

Remark 6.4.2. In the sense mentioned in Remark 6.3.5, (I2/∼,OI2/∼) is the ‘same’
topological space as the cylinder (S1 × I,OS1×I).

Example 6.4.3. Let ∼ be the equivalence relation on I2 generated by (s, 0) ∼ (s, 1),
for all s ∈ I, and by (0, t) ∼ (1, t) for all t ∈ I.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Then I2/∼ is obtained by ‘glueing together the two horizontal edges of I2’, and moreover
‘glueing together the two vertical edges of I2’. We may picture I2/∼ as follows.
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We can, for instance, first glue together the horizontal edges of I2 as in Example 6.4.1,
to obtain a cylinder.

We then glue the two circles at the end of the cylinder together.

Remark 6.4.4. We can think of I2/∼ as a ‘hollow doughnut’.

Terminology 6.4.5. We refer to (I2/∼,OI2/∼) as the torus.

Notation 6.4.6. We denote (I2/∼,OI2/∼) by (T 2,OT 2).

Example 6.4.7. Let ∼ be the equivalence relation on I2 generated by (0, t) ∼ (1, 1− t),
for all t ∈ I.

Then I2/∼ is obtained by ‘glueing together the two horizontal edges of I2 with a twist’,
so that the arrows in the figure above point in the same direction. We may picture I2/ ∼
as follows.

The glued vertical edges of I2 can be thought of as a line in I2/∼, depicted below.
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We can also picture I2/∼ as follows, from a different angle.

Terminology 6.4.8. We refer to (I2/∼,OI2/∼) as the Möbius band.

Notation 6.4.9. We denote (I2/∼,OI2/∼) by (M2,OM2).

Remark 6.4.10. If you find it difficult at first to visualise the glueing of M2 from I2,
it is a very good idea to try it with a piece of ribbon or paper!

Example 6.4.11. Let ∼ be the equivalence relation on I2 generated by (s, 0) ∼ (1−s, 1),
for all s ∈ I, and by (0, t) ∼ (1, t), for all t ∈ I.

Then I2/∼ is obtained by ‘glueing together the two vertical edges of I2’, and moreover
‘glueing together the two horizontal edges of I2 with a twist’, so that the arrows point
in the same direction. We cannot truly picture I2/∼ in R3. Nevertheless we can gain
an intuitive feeling for it, through the following picture.
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6.4. Further geometric examples of quotient topologies

We can, for instance, first glue together the vertical edges, to obtain a cylinder.

We can then bend this cylinder so that the arrows on the circles at its ends point in the
same direction.

Next we can push the cylinder through itself.

It is this step that is not possible in a true picture of I2/∼. It can be thought of glueing
together two circles: a cross-section of the part of the cylinder which we have bent
upwards, and a circle on the side of the cylinder which we have not bent upwards.
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The equivalence relation ∼ does not prescribe that these two circles should be glued.
We shall nevertheless proceed. The circle obtained after glueing the two circles together
is pictured below.

Next we can fold back the end of the cylinder which we have pushed through. We obtain
a ‘mushroom with a hollow stalk’.

Finally we can glue the ends of the cylinder together, as prescribed by ∼.
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6.4. Further geometric examples of quotient topologies

Terminology 6.4.12. We refer to (I2/∼,OI2/∼) as the Klein bottle.

Notation 6.4.13. We denote (I2/∼,OI2/∼) by (K2,OK2).

Remark 6.4.14. A rite of passage when learning about topology for the first time is to
be confronted with the following limerick. I’m sure that I remember Colin Rourke enun-
ciating it during the lecture in which I first met the Klein bottle, as an undergraduate
at the University of Warwick!

A mathematician named Klein
Thought the Möbius band was divine.
Said he: “If you glue
The edges of two,
You’ll get a weird bottle like mine!”

To investigate its meaning is the topic of Task ??.

Example 6.4.15. Let ∼ be the equivalence relation on D2 generated by (x, y) ∼ (0, 1)
for all (x, y) ∈ S1.

(0, 1)

We obtain D2/∼ by ‘contracting the boundary of D2 to the point (0, 1)’. Imagine, for
instance, that the boundary circle of D2 is a loop of fishing line. Suppose that we have
a reel at the point (0, 1). Then D2/∼ is obtained by reeling in tight all of our fishing
line. We obtain a ‘hollow ball’.

(0, 1)
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(0, 1)

(0, 1)

(0, 1)
(0, 1)

Remark 6.4.16. We could have chosen any single point on S1, instead of (0, 1), in the
definition of ∼.

Terminology 6.4.17. We refer to (D2/∼,OD2/∼) as the 2-sphere.

Notation 6.4.18. We denote (D2/∼,OD2/∼) by (S2,OS2).

Remark 6.4.19. In the sense mentioned in Remark 6.3.5, (S2,OS2) is the ‘same’ topo-
logical space as the set

{x ∈ R3 | ‖x‖ = 1}

equipped with the subspace topology with respect to (R3,OR3).
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E6. Exercises for Lecture 6

E6.1. Exam questions

Task E6.1.1. Let X = {a, b, c, d, e} be a set with five elements. Let OX be the topology
on X given by

{∅, {a}, {e}, {a, e}, {c, d}, {c, d, e}, {a, c, d, e}, {b, c, d, e}, X} .

Let ∼ be the equivalence relation on X generated by b ∼ d and c ∼ e. List the subsets
of X/∼ which belong to OX/∼.

Task E6.1.2. Let X = {a, b} be a set with two elements. Let OX be the topology on
X given by

{∅, {a}, X} .

Let Y = {a′, b′, c′, d′, , e′} be a set with five elements. Let OY be the topology on Y
given by {

∅, {a′}, {b′, c′}, {a′, b′, c′}, {b′, c′, e′}, {a′, b′, c′, e′}, Y
}
.

Let ∼ be the equivalence relation on Y generated by b′ ∼ c′ and c′ ∼ e′. Let X ×X be
equipped with the product topology OX×X , and let Y/∼ be equipped with the quotient
topology OY/∼. Which of the following maps

X ×X Y/∼

are continuous?

(1) (a, a) 7→ [a′], (a, b) 7→ [b′], (b, a) 7→ [b′], (b, b) 7→ [d′]

(2) (a, a) 7→ [b′], (a, b) 7→ [b′], (b, a) 7→ [d′], (b, b) 7→ [d′]

(3) (a, a) 7→ [b′], (a, b) 7→ [b′], (b, a) 7→ [a′], (b, b) 7→ [d′]

(4) (a, a) 7→ [b′], (a, b) 7→ [a′], (b, a) 7→ [a′], (b, b) 7→ [a′]

(5) (a, a) 7→ [a′], (a, b) 7→ [d′], (b, a) 7→ [a′], (b, b) 7→ [d′]

Task E6.1.3. Let U be the subset of I2 given by([
0, 1

4

[
×
]

1
8 ,

3
8

[)
∪
(]

1
2 , 1
]
×
]

1
8 ,

3
8

[)
.
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For which of the following choices of (I2/∼,OI2/∼) does π(U) belong to OI2/∼?

(1) The torus.

(2) The Möbius band.

(3) The Klein bottle.

(4) The cylinder.

Task E6.1.4. Find a subset U of I2 with the following properties.

(1) We have that π(U) belongs to OI2/∼ both when (I2/∼,OI2/∼) is the Klein bottle,
and when (I2/∼,OI2/∼) is the Möbius band.

(2) It is not a subset of ]0, 1[× ]0, 1[.

Task E6.1.5. Let ∼ be the equivalence relation on S1 generated by (1, 0) ∼ (0, 1) ∼
(−1, 0) ∼ (−1,−1).

This task has two parts.

(1) Draw a picture of S1/∼. Indicate any important aspects.

(2) Let U be the ‘open arc’ given by{
(x, y) ∈ S1 | −1 ≤ x < −1

2

}
.

(

)

U
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E6.2. For a deeper understanding

Does π(U) belong to OS1/∼?

Task E6.1.6. Find an equivalence relation ∼ on D2 with the following properties.

(1) We can picture D2/∼ as a ‘hollow ball’.

(2) No three distinct elements of D2 are identified by ∼.

Task E6.1.7. Find a subset X of R2, and an equivalence relation ∼ on X, such that
X/∼ can be pictured as a ‘hollow cone’.

Let X be equipped with the subspace topology OX with respect to (R2,OR2). Give an
example of a subset U of X/∼ such that π−1(U) is the disjoint union of a pair of subsets
U0 and U1 of X which belong to OX .

Task E6.1.8. Let X = I2∪([3, 4]× [0, 1]). Let OX be the subspace topology on X with
respect to (R2,OR2).

Define an equivalence relation ∼ on X such that (X/∼,OX/∼) can be thought of as two
tori placed side by side.

E6.2. For a deeper understanding

Task E6.2.1. Let (X,OX) be a topological space. Let A be a subset of X. Let OA
denote the subspace topology on A with respect to (X,OX). Let

A X
i
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denote the inclusion map. Let O′A denote the set{
i−1(U) | U ∈ OX

}
.

Prove that OA = O′A.

Task E6.2.2. Let (X,OX) and (Y,OY ) be topological spaces. Let OX×Y denote the
product topology on X × Y with respect to (X,OX) and (Y,OY ). Let

X × Y X
p1

and

X × Y Y
p2

denote the projection maps. Let O′X×Y denote the set{
p−1

1 (U) | U ∈ OX
}
∪
{
p−1

2 (U) | U ∈ OY
}
.

Prove that O′X×Y is a subbasis for (X × Y,OX×Y ).

Remark E6.2.3. In other words, OX×Y is the smallest possible topology on X ×Y for
which p1 and p2 are continuous.

Task E6.2.4. In the notation of Task E6.2.2, find an example to prove that O′X×Y is
not a basis for (X × Y,OX×Y ).

Task E6.2.5. Find an equivalence relation ∼ on I2 such that (I2/∼,OI2/∼) can truly,
unlike the Klein bottle, be pictured as follows.

Terminology E6.2.6. Let X and Y be sets. Let ∼ be an equivalence relation upon X.
Let

X Y
f

be a continuous map. Then f respects ∼ if, for all x, x′ ∈ X such that x ∼ x′, we have
that f(x) = f(x′).

112



E6.3. Exploration — torus knots

Task E6.2.7. Let (X,OX) and (Y,OY ) be topological spaces. Let ∼ be an equivalence
relation on X, and let X/∼ be equipped with the quotient topology with respect to
(X,OX). Let

X Y
f

be a continuous map such that f respects ∼. Let

X/∼ Y
g

be the map given by [x] 7→ f(x), which is well defined since f respects ∼. Prove that g
is continuous.

E6.3. Exploration — torus knots

Task E6.3.1. Let K denote the subset of I2 pictured below.

(0, 0) ( 1
3 , 0) ( 2

3 , 0)

(0, 12 ) (1, 12 )

( 1
3 , 1) ( 2

3 , 1) (1, 1)

In words: begin at (0, 0), and follow a line of gradient 2
3 until we hit a side of I2; Jump

over to the other side, and repeat this process. Eventually we end up at (1, 1). Let

I2 T 2
π

be the quotient map. Can you visualise or, even better, draw π(K)?

Remark E6.3.2. If you can draw π(K), I would love to see it!

Remark E6.3.3. Later in the course, we shall investigate knots and links. As an
apéritif, π(K) is a gadget known as the trefoil knot, but wrapped around a torus!

Terminology E6.3.4. A knot which can be wrapped around a torus is known as a
torus knot. Any pair of integers p and q whose greatest common divisor is 1 gives rise
to a torus knot in a similar way, working with lines of gradient p

q in place of 2
3 above.

For any pair of integers p and q, one obtains a link wrapped around a torus.
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7. Monday 27th January

7.1. Homeomorphisms

Definition 7.1.1. Let X and Y be sets. A map

X Y
f

is bijective if there is a map

Y X
g

such that g ◦ f = idX and f ◦ g = idY .

Remark 7.1.2. Here idX and idY denote the respective identity maps, in the terminol-
ogy of E5.1.2.

Notation 7.1.3. Let X and Y be sets, and let

X Y
f

be a bijective map. We often denote the corresponding map

Y X
g

by f−1.

Remark 7.1.4. Let X and Y be sets. A map

X Y
f

is bijective in the sense of Definition 7.1.1 if and only if f is both injective and surjective.
To prove this is Task E7.2.1.

Definition 7.1.5. Let (X,OX) and (Y,OY ) be topological spaces. A map

X Y
f

is a homeomorphism if the following hold.
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(1) We have that f is continuous,

(2) There is a continuous map

Y X
g

such that g ◦ f = idX and f ◦ g = idY .

Remark 7.1.6. An equivalent definition of a homeomorphism is the topic of Task E7.3.1.

Definition 7.1.7. Let (X,OX) and (Y,OY ) be topological spaces. Then (X,OX) is
homeomorphic to (Y,OY ) if there exists a homeomorphism

X Y.

Remark 7.1.8. By Task E7.3.2, we have that (X,OX) is homeomorphic to (Y,OY ) if
and only if there exists a homeomorphism

Y X.

7.2. Examples of homeomorphisms between finite topological
spaces

Example 7.2.1. Let X = {a, b, c} be a set with three elements. Let

X X
f

be the bijective map given by a 7→ b, b 7→ c, and c 7→ a. Let O0 be the topology on X
given by

{∅, {a}, {b, c}, X} .

Let O1 be the topology on X given by

{∅, {a, c}, {b}, X} .

Let us regard the copy of X in the source of f as equipped with the topology O0, and
regard the copy of X in the target of f as equipped with the topology O1. We have the
following.

f−1 (∅) = ∅
f−1 ({a, c}) = {b, c}
f−1 ({b}) = {a}
f−1 (X) = X.
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7.2. Examples of homeomorphisms between finite topological spaces

Thus f is continuous. Let

X X
g

be the inverse to f , given by a 7→ c, b 7→ a, and c 7→ b. We have the following.

g−1 (∅) = ∅
g−1 ({a}) = {b}

g−1 ({b, c}) = {a, c}
g−1 (X) = X.

Thus g is continuous. We conclude that f is a homeomorphism. In other words, we have
that (X,O0) and (X,O1) are homeomorphic.

Example 7.2.2. Let X be as in Example 7.2.1. Let O2 be the topology on X given by

{∅, {a, b}, {c}, X} .

Let f be as in Example 7.2.1. Let us again regard the copy of X in the source of f as
equipped with the topology O0, but let us now regard the copy of X in the target of f
as equipped with the topology O2. Then f is not continuous, since f−1 ({c}) = {b}, and
{b} does not belong to O0. Thus f is not a homeomorphism.

Remark 7.2.3. Let

X X
h

be the bijective map given by a 7→ c, b 7→ b, and c 7→ a. We have the following.

h−1 (∅) = ∅
h−1 ({a, b}) = {b, c}
h−1 ({c}) = {a}
h−1 (X) = X.

Thus h is continuous. Moreover we have that h is its own inverse. We conclude that h is a
homeomorphism. In other words, we have that (X,O0) and (X,O2) are homeomorphic.

� Example 7.2.2 and Remark 7.2.3 demonstrate that a pair of topological spaces can
be homeomorphic, even though a particular map that we consider might not be a

homeomorphism. It is very important to remember this!

Example 7.2.4. Let X be as in Example 7.2.1. Let O3 be the topology on X given by

{∅, {a}, {b}, {a, b}, {b, c}, X} .
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Let f be as in Example 7.2.1. Let us regard the copy of X in the source of f as equipped
with the topology O3, and regard the copy of X in the target of f as equipped with the
topology O1. Since O0 is a subset of O3, the calculation of Example 7.2.1 demonstrates
that f is continuous. The inverse of f is the map g of Example 7.2.1. We have that
g−1 ({b}) = {c}, and {c} does not belong to O1. Thus g is not continuous. We conclude
that f is not a homeomorphism.

Remark 7.2.5. Let (X,OX) and (Y,OY ) be homeomorphic topological spaces. Then
OX and OY must have the same cardinality. To prove this is Task E7.3.3. Thus (X,O3)
is not homeomorphic to (X,O1).

� Example 7.2.4 and Remark 7.2.5 demonstrate that there can be a continuous bi-
jective map from one topological space to another, and yet these topological spaces

might not be homeomorphic. It is very important to remember this! This phenomenon
does not occur in group theory or linear algebra, for instance.

7.3. Geometric examples of homeomorphisms

Remark 7.3.1. Two geometric examples of topological spaces are, intuitively, homeo-
morphic if we can bend, stretch, compress, twist, or otherwise ‘manipulate in a continu-
ous manner’, one to obtain the other. We can sharpen or smooth edges. We cannot cut
or tear.

Remark 7.3.2. It may help you to think of geometric examples of topological spaces
as made of dough, or of clay that has not yet been fired!

Example 7.3.3. Suppose that a, b ∈ R, and that a < b. Let the open interval ]a, b[ be
equipped with the subspace topology O]a,b[ with respect to (R,OR).

a b

] [

Let the open interval ]0, 1[ also be equipped with the subspace topology with respect to
(R,OR).

0 1

] [

Then
(
]a, b[ ,O]a,b[

)
is homeomorphic to

(
]0, 1[ ,O]0,1[

)
. Intuitively we can stretch or

shrink, and translate, ]0, 1[ to obtain ]a, b[. To be rigorous, the map
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7.3. Geometric examples of homeomorphisms

]0, 1[ ]a, b[
f

given by t 7→ a(1− t) + bt is a homeomorphism.

a b

0 1

For the following hold.

(1) By Task E5.3.14, we have that f is continuous.

(2) Let

]a, b[ ]0, 1[
g

be the map given by t 7→ t−a
b−a . By Task E5.3.14, we have that g is continuous.

Moreover we have the following, for every t ∈ ]0, 1[.

g (f(t)) = g (a(1− t) + bt)

=
a(1− t) + bt− a

b− a

=
t(b− a)

b− a
= t.

Thus we have that g ◦ f = id]0,1[. We also have the following, for every t ∈ ]a, b[.

f (g(t)) = f

(
t− a
b− a

)
= a

(
1− t− a

b− a

)
+ b

(
t− a
b− a

)
=
a (b− a)− a (t− a) + b (t− a)

b− a

=
t (b− a)

b− a
= t.

Thus we have that f ◦ g = id]a,b[.
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Example 7.3.4. Suppose that a, b ∈ R, and that a < b. Suppose also that a′, b′ ∈ R,
and that a′ < b′. Let ]a, b[ be equipped with the subspace topology O]a,b[ with respect
to (R,OR).

a b

] [

Let ]a′, b′[ be equipped with the subspace topology O]a′,b′[ with respect to (R,OR).

a′ b′

] [

By Example 7.3.3 and Remark E7.1.11, we have that
(
]a, b[ ,O]a,b[

)
is homeomorphic

to
(
]a′, b′[ ,O]a′,b′[

)
. In other words, we use the homeomorphism of Example 7.3.3 to

construct a homeomorphism from (]a, b[ ,O]a,b[) to (]a′, b′[ ,O]a′,b′[) in two steps.

a b

a′ b′

0 1

Remark 7.3.5. The technique of Example 7.3.4 and Example 7.3.4 is a good one to
keep in mind when trying to prove that a pair of topological spaces are homeomorphic.

(1) Look for an intermediate special case, which in this case is where one of the
topological spaces is

(
]0, 1[ ,O]0,1[

)
, for which we can explicitly write down a home-

omorphism without too much difficulty.

(2) Apply a ‘machine’, which in this case is the fact that we can compose and invert
homeomorphisms, to achieve our original goal.

Example 7.3.6. Suppose that a, b ∈ R, and that a < b. Suppose also that a′, b′ ∈ R,
and that a′ < b′. Let [a, b] be equipped with the subspace topology O[a,b] with respect
to (R,OR).
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a b

[ ]

Let [a′, b′] be equipped with the subspace topology O[a′,b′] with respect to (R,OR).

a′ b′

[ ]

Then
(
[a, b] ,O[a,b]

)
is homeomorphic to

(
[a′, b′] ,O[a′,b′]

)
. Intuitively, we can stretch or

shrink, and translate, [a, b] to obtain [a, b]. To be rigorous, we can argue in exactly the
same way as in Example 7.3.4 and Example 7.3.4, with the unit interval (I,OI) as the
intermediate special case.

Remark 7.3.7. The assumption that a < b and a′ < b′ is crucial in Example 7.3.6. Let
a ∈ R. Let {a} = [a, a] be equipped with the subspace topology O{a} with respect to
(R,OR).

a

Suppose that a′, b′ ∈ R, and that a′ < b′.

a′ b′

[ ]

We have the following.

(1) A homeomorphism is in particular a bijection, as observed in Task E7.3.1.

(2) There is no bijective map

{a} [a′, b′] .

To check that you understand this is Task E7.2.2.

We conclude that
(
{a},O{a}

)
is not homeomorphic to

(
[a′, b′] ,O[a′,b′]

)
. Can you see

where the argument of Example 7.3.4 breaks down? This is Task E7.2.3.

Remark 7.3.8. In a nutshell, we can shrink a closed interval to a closed interval which
has as small a strictly positive length as we wish, but not to a point.
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Example 7.3.9. Let the open interval ]−1, 1[ be equipped with the subspace topology
O]−1,1[ with respect to (R,OR).

−1 1

] [

Then
(
]−1, 1[ ,O]−1,1[

)
is homeomorphic to (R,OR). Intuitively, think a cylindrical piece

of dough. The dough can be worked in such a way that the cylinder becomes a longer
and longer piece of spaghetti. We can think of open intervals in topology in a similar
way!

With dough, our piece of spaghetti would eventually snap, but the mathematical
dough of which an open interval is made can be stretched as much as we like, to the
end of time! If we ‘wait long enough’, our mathematical piece of spaghetti will be longer
than the distance between any pair of real numbers! A way to visualise this is depicted
below.

]−1, 1[

R

To be rigorous, the map

]−1, 1[ R
f

given by t 7→ t
1−|t| is a homeomorphism. For the following hold.

(1) We have that f is continuous. To prove this is the topic of Task E7.2.4.

(2) Let

R ]−1, 1[
g

be the map given by t 7→ t
1+|t| . We have that g is continuous. To prove this is

the topic of Task E7.2.5. Moreover we have that g (f(t)) = t for all t ∈ ]−1, 1[, so
that g ◦ f = id]−1,1[. In addition we have that f (g(t)) = t for all t ∈ R, so that
f ◦ g = idR. To prove the last two statements is the topic of Task E7.2.6.
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Example 7.3.10. Suppose that a and b belong to R, and that a < b. Let O]a,b[ denote
the subspace topology on ]a, b[ with respect to (R,OR).

a b

] [

By Example 7.3.4, Example 7.3.9 and Remark E7.1.11, we have that (]a, b[ ,O]a,b[) is
homeomorphic to (R,OR). Following the technique described in Remark 7.3.5, we use the
homeomorphisms of Example 7.3.4 and Example 7.3.9 to construct a homeomorphism
from (]a, b[ ,O]a,b[) to (R,OR) in two steps.

]a, b[

]−1, 1[

R

Example 7.3.11. Let a0, b0, a
′
0, b
′
0 ∈ R be such that a0 < b0 and a′0 < b′0. Let X0 be

the ‘open rectangle’ given by ]a0, b0[× ]a′0, b
′
0[, equipped with the subspace topology OX0

with respect to (R2,OR2).

a0 b0

a′0

b′0

Let a1, b1, a
′
1, b
′
1 ∈ R be such that a1 < b1 and a′1 < b′1. Let X1 be the ‘open rectangle’

given by ]a1, b1[ × ]a′1, b
′
1[, equipped with the subspace topology OX1 with respect to

(R2,OR2).
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a1 b1

a′1

b′1

By Example 7.3.4, we have that
(
]a0, b0[ ,O]a0,b0[

)
is homeomorphic to

(
]a1, b1[ ,O]a1,b1[

)
,

and that
(

]a′0, b
′
0[ ,O]a′0,b′0[

)
is homeomorphic to

(
]a′1, b

′
1[ ,O]a′1,b′1[

)
. By Task E7.1.14, we

deduce that (X0,OX0) is homeomorphic to (X1,OX1).

Example 7.3.12. Let a0, b0, a
′
0, b
′
0 ∈ R be such that a0 < b0 and a′0 < b′0. Let X0 be the

‘closed rectangle’ given by [a0, b0] × [a′0, b
′
0], equipped with the subspace topology OX0

with respect to (R2,OR2).

a0 b0

a′0

b′0

Let a1, b1, a
′
1, b
′
1 ∈ R be such that a1 < b1 and a′1 < b′1. Let X1 be the ‘closed rectangle’

given by [a1, b1] × [a′1, b
′
1], equipped with the subspace topology OX1 with respect to

(R2,OR2).

a1 b1

a′1

b′1

By Example 7.3.6, we have that
(
[a0, b0] ,O[a0,b0]

)
is homeomorphic to

(
[a1, b1] ,O[a1,b1]

)
,

and that
(

[a′0, b
′
0] ,O[a′0,b′0]

)
is homeomorphic to

(
[a′1, b

′
1] ,O]a′1,b′1[

)
. By Task E7.1.14, we

deduce that (X0,OX0) is homeomorphic to (X1,OX1).
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Remark 7.3.13. As in Remark 7.3.7, it is crucial in Example 7.3.12 that the inequalities
are strict. For instance, let a, a′0, b

′
0 ∈ R be such that a′0 < b′0. Let X0 be the line

{a} × [a′0, b
′
0], equipped with the subspace topology OX0 with respect to (R2,OR2).

(a, a′0)

(a, b′0)

Let a1, b1, a
′
1, b
′
1 ∈ R be such that a1 < b1 and a′1 < b′1. Let X1 be the ‘closed rectangle’

given by [a1, b1] × [a′1, b
′
1], equipped with the subspace topology OX1 with respect to

(R2,OR2).

a1 b1

a′1

b′1

Then (X0,OX0) is not homeomorphic to (X1,OX1). We cannot prove this yet, but we
shall be able to soon, after we have studied connectedness.

Example 7.3.14. Let X be the square depicted below, consisting of just the four lines,
with no ‘inside’.

(2, 2)

(2,−2)

(−2, 2)

(−2,−2)

In other words, X is given by

({−2, 2} × [−2, 2]) ∪ ([−2, 2]× {−2, 2}) .
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Let OX denote the subspace topology on X with respect to (R2,OR2). Then (X,OX) is
homeomorphic to the circle (S1,OS1).

A way to construct a homeomorphism

S1 X
f

is to send each x ∈ S1 to the unique y ∈ X such that y = kx, where k ∈ R has the
property that k ≥ 0. To rigorously write down the details is the topic of Task E7.2.7.

Remark 7.3.15. Think of a circular piece of string on a table. Even without stretching
it, you could manipulate it so that it becomes a square!

Example 7.3.16. A similar argument to that of Example 7.3.14 demonstrates that the
unit disc (D2,OD2)

is homeomorphic to the unit square (I2,OI2).

To prove this is the topic of Task E7.2.9.
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Example 7.3.17. Let Y denote the union of the set{
(x, y) ∈ R2 | −1 ≤ x ≤ 0 and |y| = 1 + x

}
and the set {

(x, y) ∈ R2 | 0 ≤ x ≤ 1 and |y| = 1− x
}
.

Let OY denote the subspace topology on Y with respect to (R2,OR2).

Then (Y,OY ) is homeomorphic to the circle (S1,OS1).

A way to construct a homeomorphism

Y S1
f

is to send each (x, y0) ∈ Y to the unique (x, y1) ∈ S1 such that y1 = ky0, where k ∈ R
has the property that k ≥ 0. To rigorously write down the details is the topic of Task
??.

Remark 7.3.18. By Remark E7.1.11, we have that the topological space (X,OX) of
Example 7.3.14 is homeomorphic to the topological space (Y,OY ) of Example 7.3.17,
since both are homeomorphic to (S1,OS1). To prove this in a different way is the topic
of Task 7.3.17.
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Example 7.3.19. Let X be a ‘blob’ in R2, equipped with the subspace topology OX
with respect to (R2,OR2).

Then (X,OX) is homeomorphic to the unit square (I2,OI2). If X were made of dough,
it would be possible to knead it to obtain a square! To rigorously prove that (X,OX) is
homeomorphic to (I2,OI2) is the topic of Task ??.

Remark 7.3.20. In Task ??, we shall not explicitly describe a subset of R2 such as
the ‘blob’ above. We shall work a little more abstractly, with subsets of R2 which can
be ‘cut into star shaped pieces’. Here ‘star shaped’ has a technical meaning, discussed
before Task ??.

128



E7. Exercises for Lecture 7

E7.1. Exam questions

Task E7.1.1. Let X = {a, b, c, d} be a set with four elements. Let OX be the topology
on X given by

{∅, {a}, {c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, X} .

Let Y = {1, 2, 3, 4} be a set with four elements. Let OZ be the topology on Z given by

{∅, {2}, {3}, {2, 3}, {1, 3, 4}, Z} .

Let

X Y
f

be the map given by a 7→ 3, b 7→ 1, c 7→ 2, and d 7→ 4. Is f a homeomorphism?

Task E7.1.2. Let X = {a, b, c} be a set with three elements. Let OX be the topology
on X given by

{∅, {a}, {b, c}, X} .

Let Y = {a′, b′} be a set with two elements. Let OY be the topology on Y given by{
∅, {a′}, Y

}
.

Let Z = {1, 2, . . . , 6} be a set with six elements. Let OZ be the topology on Z given by

{∅, {2}, {2, 5}, {1, 4}, {1, 3, 4, 6}, {1, 2, 4}, {1, 2, 4, 5}, {1, 2, 3, 4, 6}, Z} .

Let X × Y be equipped with the product topology OX×Y . Find a homeomorphism

X × Y Z.
f

Task E7.1.3. Let [0, 2[ be equipped with the subspace topology O[0,2[ with respect to
(R,OR).

0 2

[ [
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Let ]3, 4] be equipped with the subspace topology O]3,4] with respect to (R,OR).

3 4

] ]

Prove that
(
[0, 2[ ,O[0,2[

)
is homeomorphic to

(
]3, 4] ,O]3,4]

)
.

Task E7.1.4. Suppose that a and b belong to R, and that a < b. Suppose that a′, b′ ∈ R,
and that a′ < b′. Let O[a,b[ be the subspace topology on [a, b[ with respect to (R,OR).

a b

[ [

Let O[a′,b′[ be the subspace topology on ]a′, b′] with respect to (R,OR).

a′ b′

] ]

Generalise your argument from Task E7.1.3 to prove that
(
[a, b[ ,O[a,b[

)
is homeomorphic

to
(
]a′, b′] ,O]a′,b]

)
.

Task E7.1.5. Suppose that a belongs to R. Let O]a,∞[ denote the subspace topology
on ]a,∞[ with respect to (R,OR).

a

]

Prove that (]a,∞[ ,O]a,∞[) is homeomorphic to (R,OR). You may wish to proceed as
follows.

(1) Let

]0, 1[ ]a,∞[
f

be the map given by x 7→ a+ x
1−x . Demonstrate that f is a homeomorphism. You

may wish to appeal to Task E5.3.15.
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E7.1. Exam questions

(2) By Task E7.3.2, deduce that there is a homeomorphism

]a,∞[ ]0, 1[ .

By Example 7.3.10, there is a homeomorphism

]0, 1[ R.

By Task E7.1.10, conclude that there is a homeomorphism

]a,∞[ R.

Task E7.1.6. Suppose that b belongs to R. Let O]−∞,b[ denote the subspace topology
on ]−∞, b[ with respect to (R,OR).

b

[

Prove that (]−∞, b[ ,O]−∞,b[) is homeomorphic to (R,OR).

Task E7.1.7. Let k ∈ R, and let c ∈ R. Let Lk,c be the set given by{
(x, y) ∈ R2 | y = kx+ c

}
.

Let OLk,c denote the subspace topology on Lk,c with respect to (R2,OR2).

Prove that (Lk,c,OLk,c) is homeomorphic to (R,OR).

Task E7.1.8. Let k ∈ R, and let c ∈ R. Let a, b ∈ R be such that a < b. Let L
[a,b]
k,c be

the set given by {
(x, y) ∈ R2 | y = kx+ c and a ≤ x ≤ b

}
.

Let O
L
[a,b]
k,c

denote the subspace topology on L
[a,b]
k,c with respect to (R2,OR2).
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Prove that

(
L

[a,b]
k,c ,OL[a,b]

k,c

)
is homeomorphic to (I,OI). You may quote without proof

anything from the lectures, and any of the other tasks.

Task E7.1.9. Find an intuitive argument to demonstrate that the cylinder (S1 ×
I,OS1×I)

is homeomorphic to an annulus (Ak,OAk), where 0 < k < 1.

Can you find a way to give a rigorous proof, along the lines of your intuitive argument?

Task E7.1.10. Let (X,OX), (Y,OY ), and (Z,OZ) be topological spaces. Let

X Y
f0

and

Y Z
f1

be homeomorphisms. Prove that

X Z
f1 ◦ f0

is a homeomorphism.
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Remark E7.1.11. Together with Task E7.3.2, it follows that if any two of (X,OX),
(Y,OY ), and (Z,OZ) are homeomorphic, then each is homeomorphic to the other two.

Remark E7.1.12. In other words, the relation on the set of topological spaces given
by (X0,OX0) ∼ (X1,OX1) if (X0,OX0) is homeomorphic to (X1,OX1) is an equivalence
relation.

Remark E7.1.13. If it worries you, we do have to be careful about how we make sense
of something as large as the set of topological spaces. This is a foundational matter
which can be addressed in many different ways, and which we can harmlessly ignore!

Task E7.1.14. Let (X0,OX0), (X1,OX1), (Y0,OY0), and (Y1,OY1) be topological spaces.
Let

X0 Y0

f0

and

X1 Y1

f1

be homeomorphisms. Prove that the map

X0 ×X1 Y0 × Y1

f0 × f1

given by (x0, x1) 7→ (f0(x0), f1(x1)) is a homeomorphism.

Definition E7.1.15. Let (X,OX) and (Y,OY ) be topological spaces. A map

X Y
f

is open if, for every subset U of X which belongs to OX , we have that f(U) belongs to
OY .

Task E7.1.16. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a homeomorphism. Prove that f is open.

Definition E7.1.17. Let (X,OX) and (Y,OY ) be topological spaces. A map

X Y
f

is closed if, for every subset V of X which is closed with respect to OX , we have that
f(V ) is closed with respect to OY .
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Task E7.1.18. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a homeomorphism. Prove

X Y
f

is closed.

Task E7.1.19. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that

X Y
f

is a homeomorphism. Let A be a subset of X. Let A be equipped with the subspace
topology OA with respect to (X,OX). Let f(A) be equipped with the subspace topology
Of(A) with respect to (Y,OY ). Prove that (A,OA) is homeomorphic to

(
f(A),Of(A)

)
.

Task E7.1.20. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that

X Y
f

is a homeomorphism. Let A be a subset of X. Let X \A be equipped with the subspace
topology OX\A with respect to (X,OX). Let Y \ f(A) be equipped with the subspace
topology with respect to (Y,OY ). Deduce from Task E7.1.19 that

(
X \A,OX\A

)
is

homeomorphic to
(
Y \ f(A),OY \f(A)

)
.

E7.2. In the lecture notes

Task E7.2.1. Let X and Y be sets. Prove that a map

X Y
f

is bijective in the sense of Definition 7.1.1 if and only if it is both injective and surjective.

Task E7.2.2. Let X = {x} be a set with one element. Let Y be a set with at least two
elements. Why can there not be a bijective map between X and Y ? This was appealed
to in Task 7.3.7.

Task E7.2.3. In the notation of Example 7.3.6, where does the analogue of the argument
of Example 7.3.6 for closed intervals break down if we assume that a = b?
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Task E7.2.4. Prove that the map

]−1, 1[ R
f

given by t 7→ t
1−|t| is continuous. You may wish to proceed as follows.

(1) Prove that the map

]−1, 1[ R
g1

given by t 7→ 1 − |t| is continuous. For this, you may wish to express g1 as a
composition of maps, allowing you to deduce continuity from Task E5.3.3and from
Task E5.3.14.

(2) Taking g0 to be the inclusion map

]−1, 1[ R

and g1 to be the map of (1), deduce the continuity of f from Proposition 5.2.2, (1),
and Task E5.3.10.

Task E7.2.5. Prove that the map

R ]−1, 1[
g

given by t 7→ t
1+|t| is continuous. You may wish to proceed in a similar way as in Task

E7.2.4.

Task E7.2.6. Let

]−1, 1[ R
f

be the map of Task E7.2.4. Let

R ]−1, 1[
g

be the map of Task E7.2.5. Prove that for all t ∈ ]−1, 1[ we have that g (f(t)) = t, and
that for all t ∈ R we have that f (g(t)) = t.

Task E7.2.7. Let X be the square of Example 7.3.14, given by

({−2, 2} × [−2, 2]) ∪ ([−2, 2]× {−2, 2}) .
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(2, 2)

(2,−2)

(−2, 2)

(−2,−2)

Let OX denote the subspace topology on X with respect to (R2,OR2). Construct a
homeomorphism

S1 X
f

in the manner indicated in Example 7.3.14.

You may wish to proceed as follows.

(1) Let Aeast be the subset of S1 given by{
(x, y) ∈ S1 | x > 0 and − 1√

2
≤ y ≤ 1√

2
.
}
.

Let Aeast be equipped with the subspace topology with respect to (S1,OS1). Let
Beast be the subset of X given by{

(2, y) ∈ R2 | −2 ≤ y ≤ 2
}
.
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Let Beast be equipped with the subspace topology with respect to (X,OX). Prove
that the map

Aeast Beast

feast

given by (x, y) 7→
(

2, 2y
x

)
is continuous. Quote any tasks which you appeal to.

(2) Prove that the map

Beast Aeast

geast

given by (x, y) 7→ 1
‖(x,y)‖(x, y) is continuous. In particular, quote any tasks which

you appeal to.

(3) Verify that geast ◦ feast = idAeast , and that feast ◦ geast = idBeast . Conclude that feast

is a homeomorphism.

(4) Let Awest be the subset of S1 given by{
(x, y) ∈ S1 | x < 0 and − 1√

2
≤ y ≤ 1√

2

}
.
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Let Awest be equipped with the subspace topology with respect to (S1,OS1). Let
Bwest be the subset of X given by{

(−2, y) ∈ R2 | −2 ≤ y ≤ 2
}
.

Let Bwest be equipped with the subspace topology with respect to (X,OX). As in
(1) – (3), prove that the map

Awest Bwest

fwest

given by (x, y) 7→
(
−2, 2y

x

)
is a homeomorphism. Quote any tasks which you appeal

to.

(5) Let Anorth be the subset of S1 given by{
(x, y) ∈ S1 | y > 0 and − 1√

2
≤ x ≤ 1√

2

}
.

Let Anorth be equipped with the subspace topology with respect to (S1,OS1). Let
Bnorth be the subset of X given by{

(x, 2) ∈ R2 | −2 ≤ x ≤ 2
}
.
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Let Bnorth be equipped with the subspace topology with respect to (X,OX). Along
the lines of (1) – (3), prove that the map

Anorth Bnorth

fnorth

given by (x, y) 7→
(

2x
y , 2

)
is a homeomorphism. Quote any tasks which you appeal

to.

(6) Let Asouth be the subset of S1 given by{
(x, y) ∈ S1 | y < 0 and − 1√

2
≤ x ≤ 1√

2

}
.

Let Anorth be equipped with the subspace topology with respect to (S1,OS1). Let
Bnorth be the subset of X given by{

(x, 2) ∈ R2 | −2 ≤ x ≤ 2
}
.

Let Bsouth be equipped with the subspace topology with respect to (X,OX). Along
the lines of (1) – (3), prove that the map

Asouth Bsouth

fsouth

given by (x, y) 7→
(

2x
y ,−2

)
is a homeomorphism. Quote any tasks which you appeal

to.
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(7) Appeal to Task E7.3.6 three times to build a homeomorphism

S1 X

from the homeomorphisms feast, fsouth, fwest, and fnorth.

Task E7.2.8. Let X be the subset [−2, 2] × [−2, 2] of R2, equipped with the subspace
topology OX with respect to (R2,OR2).

(2, 2)

(2,−2)

(−2, 2)

(−2,−2)

Construct a homeomorphism

D2 X.
f

You may wish to proceed by adapting your argument from Task E7.2.7, in the following
manner.

(1) Let Aeast be the subset of D2 given by{
(x, y) ∈ D2 | x > 0 and − 1√

2
≤ y ≤ 1√

2

}
.

Let Aeast be equipped with the subspace topology with respect to (D2,OD2). Let
Beast be the subset of X given by{

(x, y) ∈ X | x > 0 and − 1√
2
≤ y ≤ 1√

2

}
.
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Let Beast be equipped with the subspace topology with respect to (X,OX). Prove
that the map

Aeast Beast

feast

given by (x, y) 7→
(

2
‖(x,y)‖ ,

2y
x

)
is a homeomorphism. Quote any tasks which you

appeal to.

(2) Modify (4) – (6) of Task E7.2.7 in a similar way.

(3) LetD2\{0} be equipped with the subspace topologyOD2\{0} with respect to (D2,OD2).
Let X \ {0} be equipped with the subspace topology OX\{0} with respect to (X,OX).
Appeal to Task E7.3.6 three times to build a homeomorphism

D2 \ {0} X \ {0}
f

from the homeomorphisms feast, fsouth, fwest, and fnorth of (1) and (2).
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(4) By Task E7.3.9, deduce that the homeomorphism f of (3) gives rise to a homeomor-
phism

D2 X.

Task E7.2.9. Prove that (D2,OD2) is homeomorphic to (I2,OI2). You may wish to
appeal to Task E7.2.8, Example 7.3.12, and Task E7.1.10.

E7.3. For a deeper understanding

Task E7.3.1. Let (X,OX) and (Y,OY ) be topological spaces. Prove that a map

X Y
f

is a homeomorphism if and only if f is bijective, continuous, and open.

Task E7.3.2. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a homeomorphism. By definition of a homeomorphism, there is a continuous map

Y X
g

such that g ◦ f = idX and f ◦ g = idY . Prove that g is a homeomorphism.

Task E7.3.3. Let (X,OX) and (Y,OY ) be homeomorphic topological spaces. Prove
that there is a bijection between OX and OY .

Remark E7.3.4. In particular, if X and Y are finite sets such that OX has a different
cardinality to OY , then (X,OX) cannot be homeomorphic to (Y,OY ).

Task E7.3.5. Let (X,OX) and (Y,OY ) be topological spaces. Let {Aj}j∈J be a set of
subsets of X such that X =

⋃
j∈J Aj . For every j ∈ J , let Aj be equipped with the

subspace topology with respect to (X,OX). Suppose that the following hold.
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(1) For all j0 and j1 which belong to J , the restriction of fj0 to Aj0 ∩Aj1 is equal to
the restriction of fj1 to Aj0 ∩Aj1 .

(2) We have that Aj belongs to OX for every j which belongs to J .

(3) For every j which belongs to J , we have a continuous map

Aj Y
fj

such that the map

Aj f(Aj)
f ′j

given by x 7→ fj(x) is a homeomorphism, where f(Aj) is equipped with the subspace
topology with respect to (Y,OY ).

(4) Let

X Y
f

denote the map of Notation E5.3.22 corresponding to the maps {fj}j∈J . Suppose
that f is bijective.

Prove that f is a homeomorphism. You may wish to proceed as follows.

(1) By (1) of Task E5.3.23, observe that f is continuous.

(2) Suppose that j belongs to J . Since f ′j is a homeomorphism, there is a continuous
map

f(Aj) Aj
g′j

such that g′j ◦ f ′j = idAj and f ′j ◦ g′j = idf(Aj ). Let

f(Aj) X
gj

be the map given by y 7→ g′j(y). By Task E5.1.10, observe that gj is continuous.
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(3) Suppose that j0 and j1 belong to J . We have that

fj0(Aj0) ∩ fj1(Aj1) = f(Aj0) ∩ f(Aj1).

Since f is bijective, we have that

f(Aj0) ∩ f(Aj1) = f(Aj0 ∩Aj1).

By definition of f , we have that

f(Aj0 ∩Aj1) = fj0(Aj0 ∩Aj1)

and that
f(Aj0 ∩Aj1) = fj1(Aj0 ∩Aj1).

Thus we have that
fj0(Aj0) ∩ fj1(Aj1) = fj0(Aj0 ∩Aj1)

and that
fj0(Aj0) ∩ fj1(Aj1) = fj1(Aj0 ∩Aj1).

Deduce that the restriction of gj0 to fj0(Aj0) ∩ fj1(Aj1) is equal to the restriction
of gj0 to fj0(Aj0) ∩ fj1(Aj1). Let

Y X
g

be the map of Notation E5.3.22 corresponding to the maps {gj}j∈J .

(4) By Task E7.1.16, observe that fj(Aj) belongs to OY .

(5) By (1) of Task E5.3.23, deduce from (2) and (4) that g is continuous.

(6) Observe that g ◦ f = idX , and that f ◦ g = idY .

Task E7.3.6. Let (X,OX), (Y,OY ), {Aj}j∈J , {fj}j∈J , and f be as in Task E7.3.5,
except that instead of assuming that Aj belongs to OX for every j ∈ J , suppose that
{Aj}j∈J is locally finite with respect to OX , and that Aj is closed with respect to OX
for every j ∈ J . Suppose that {f(Aj)}j∈J is locally finite with respect to OY . Prove
that f is a homeomorphism. You may wish to proceed as follows.

(1) By (2) of Task E5.3.23, observe that f is continuous.

(2) Define

f(Aj) Y
gj

as in (2) of Task E7.3.5. By Task E5.1.10, observe that gj is continuous.
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(3) As in (3) of Task E7.3.5, demonstrate that the restriction of gj0 to fj0(Aj0) ∩
fj1(Aj1) is equal to the restriction of gj0 to fj0(Aj0) ∩ fj1(Aj1). Let

Y X
g

be the map of Notation E5.3.22 corresponding to the maps {gj}j∈J .

(4) By Task E7.1.18, observe that fj(Aj) is closed in Y with respect to OY .

(5) By (2) of Task E5.3.23, deduce from (2), (4), and our assumption that {f(Aj)}j∈J
is locally finite with respect to OY , that g is continuous.

(6) As in (6) of Task E7.3.5, observe that g ◦ f = idX , and that f ◦ g = idY .

Task E7.3.7. Let O[0,1[ be the subspace topology on [0, 1[ with respect to (R,OR).

0 1

[ [

Let

[0, 1[ S1
f

be the map given by t 7→ φ(t), where

R S1
φ

is the map of Task E5.3.27.

Prove that f is a continuous bijection. Find a set {Aj}j∈J of subsets of [0, 1[ with the
following properties.

(1) We have that {Aj}j∈J is locally finite with respect to O[0,1[.

(2) For every j which belongs to J , we have that Aj is closed in [0, 1[ with respect to
O[0,1[.
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(3) Suppose that j belongs to J . Let Aj be equipped with the subspace topology with
respect to

(
[0, 1[ ,O[0,1[

)
. Let f(Aj) be equipped with the subspace topology with

respect to
(
S1,OS1

)
. Then the map

Aj f(Aj)
fj

given by t 7→ f(t) is a homeomorphism.

(4) We have that {f(Aj)}j∈J is not locally finite.

Remark E7.3.8. In Task E11.3.2, you are asked to prove that f is not homeomorphism.

Task E7.3.9. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that x belongs
to X, and that {x} is closed in X with respect to OX . Let X \ {x} be equipped with
the subspace topology OX\{x} with respect to (X,OX). Let

X Y
f

be a bijective map. Let Y \f(x) be equipped with the subspace topology OY \{f(x)} with
respect to (Y,OY ). Suppose that the map

X \ {x} Y \ {f(x)}
g

given by x′ 7→ f(x′) is a homeomorphism. Prove that f is a homeomorphism. You may
wish to appeal to Task E5.3.29.

Task E7.3.10. As in Example 6.3.1, let ∼ be the equivalence relation on I generated
by 0 ∼ 1.

0 1

Prove that (I/∼,OI/∼) is homeomorphic to (S1,OS1).

You may wish to proceed as follows.
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(1) Let

I S1
φ′

be the map given by t 7→ φ(t), where

R S1
φ

is the map of Notation E5.3.26. By Task E5.3.27 and Task E5.2.3, observe that φ′

is continuous.

(2) Observe that φ′(0) = φ′(1). By Task E6.2.7, deduce that the map

I/∼ S1
f

given by [t] 7→ φ′(t) is continuous.

(3) Let A0 be the set given by {
(x, y) ∈ S1 | x ≥ 0

}
.

Let A0 be equipped with the subspace topology with respect to (S1,OS1). Appealing
to Task E2.3.1, Proposition 5.4.3, Task E5.3.14, and Proposition 5.3.1, observe that
the map

A0 I

given by (x, y) 7→ −y
4 + 1

4 is continuous.

(4) Let

I I/∼π
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denote the quotient map. By Remark 6.1.9 and Proposition 5.3.1, deduce from (3)
that the map

A0 I/∼
g0

given by (x, y) 7→ [−y
4 + 1

4 ] is continuous.

(5) Let A1 be the set given by {
(x, y) ∈ S1 | x ≤ 0

}
.

Let A1 be equipped with the subspace topology with respect to (S1,OS1). Appealing
to Task E2.3.1, Proposition 5.4.3 and Task E5.3.14, observe that the map

A1 I

given by (x, y) 7→ y
4 + 3

4 is continuous.

(6) By Remark 6.1.9 and Proposition 5.3.1, deduce from (5) that the map

A1 I/∼
g1

given by (x, y) 7→ [y4 + 3
4 ] is continuous.

(7) Let

S1 I/∼
g

denote the map given by

(x, y) 7→

{
g0(x, y) if (x, y) belongs to A0,

g1(x, y) if (x, y) belongs to A1.

By (2) of Task E5.3.23, deduce from (4) and (6) that g is continuous.

(8) Observe that g ◦ f = idI/∼, and that f ◦ g = idS1 .

(9) Conclude by (2), (7), and (8) that f is a homeomorphism.
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E7.4. Exploration — torus knots

Task E7.4.1. Let K be the subset of T 2 of Task E6.3.1.

(0, 0) ( 1
3 , 0) ( 2

3 , 0)

(0, 12 ) (1, 12 )

( 1
3 , 1) ( 2

3 , 1) (1, 1)

Let π(K) be equipped with the subspace topology Oπ(K) with respect to (T 2,OT 2).
Prove that

(
π(K),Oπ(K)

)
is homeomorphic to (S1,OS1).
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8.1. Further geometric examples of homeomorphisms

Example 8.1.1. Let K be a subset of R3 such as the following.

Let OK denote the subspace topology on K with respect to (R3,OR3). Then (K,OK) is
an example of a knot. We have that (K,OK) is homeomorphic to (S1,O1

S).

Remark 8.1.2. The crucial point is that both K and a circle can be obtained from a
piece of string by glueing together the ends together. We may bend, twist, and stretch
the string as much as we wish before we glue the ends together.

Remark 8.1.3. We shall explore knot theory later in the course.

Example 8.1.4. We have that (T 2,OT 2) is homeomorphic to (S1 × S1,OS1×S1).

To prove this is the topic of Task E8.2.1.

Remark 8.1.5. We can think of the left copy of S1 in S1 × S1 as the circle depicted
below.

Suppose that x belongs to S1.
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We can think of {x} × S1 as a circle around x.

In this way, we can think S1 × S1 =
⋃
x∈S1{x} × S1 as a ‘circle of circles’.

A ‘circle of circles’ is intuitively exactly a torus.

8.2. Neighbourhoods

Definition 8.2.1. Let (X,OX) be a topological space. Suppose that x belongs to X.
A neighbourhood of x in X with respect to OX is a subset U of X such that x belongs
to U , and such that U belongs to OX .

� In other references, you may see a neighbourhood U of x defined simply to be a
subset of X to which x belongs, without the requirement that U belongs to OX .

Example 8.2.2. Let X = {a, b, c, d} be a set with four elements. Let OX be the
topology on X given by

{∅, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, X} .

Here is a list of the neighbourhoods in X with respect to OX of the elements of X.

Element Neighbourhoods

a {a}, {a, b}, {a, d}, {a, b, d}, {a, c, d}, X
b {b}, {a, b}, {b, d}, {a, b, d}, {b, c, d}, X
c {c, d}, {a, c, d}, {b, c, d}, X
d {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, X
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Example 8.2.3. Suppose that x belongs to D2. For instance, we can take x to be(
1
4 ,

1
4

)
.

x

A typical example of a neighbourhood of x in D2 with respect to OD2 is a subset U of
D2 which is an ‘open rectangle’, and to which x belongs. When x is

(
1
4 ,

1
4

)
, we can, for

instance, take U to be
]
0, 1

2

[
×
]
0, 1

2

[
.

We could also take the intersection U with D2 of any open rectangle in R2 to which x
belongs. By definition of OD2 , we have that U belongs to OD2 . For instance, when x is(

1
4 ,

1
4

)
, we can take U to be the intersection with D2 of ]0, 1[× ]0, 1[.

A disjoint union U0 ∪ U1 of a pair of subsets of D2 which both belong to OD2 , with the
property that x belongs to either U0 or U1, is also a neighbourhood of x in D2 with
respect to OD2 . For U0∪U1 belongs to OD2 , and x belongs to U0∪U1. When x is

(
1
4 ,

1
4

)
,

we can for instance take U0 to be
]
0, 1

2

[
×
]
0, 1

2

[
, and take U1 to be the intersection with

D2 of
]
−1,−1

2

[
×
]
−1,−1

2

[
.
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A subset of D2 to which x does not belong is not a neighbourhood of x in D2 with
respect to OD2 , even if it belongs to OD2 . When x is

(
1
4 ,

1
4

)
, the subset

]
−1

2 , 0
[
×
]
−1

2 , 0
[

is not a neighbourhood of x, for instance.

A subset of D2 to which x belongs, but which does not belong to OD2 , is not a neigh-
bourhood of x in D2 with respect to OD2 . When x is

(
1
4 ,

1
4

)
, the subset

]
0, 1

2

[
×
[
0, 1

2

]
is not a neighbourhood of x, for instance.

8.3. Limit points

Definition 8.3.1. Let (X,OX) be a topological space. Let A be a subset of X. Suppose
that x belongs to X. Then x is a limit point of A in X with respect to OX if, for every
neighbourhood U of x in X with respect to OX , there is an a ∈ U such that a belongs
to A.

Remark 8.3.2. In other words, x is a limit point of A in X with respect to OX if and
only if for every neighbourhood U of x in X with respect to OX , we have that A∩U 6= ∅.
Remark 8.3.3. Let (X,OX) be a topological space. Let A be a subset of X. Suppose
that a belongs to A. Then a is a limit point of A in X with respect to OX , since every
neighbourhood of a in X with respect to OX contains a.
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8.4. Examples of limit points

Example 8.4.1. Let X = {a, b} be a set with two elements. Let OX be the topology
on X given by

{∅, {b}, X} .

Let A = {b}. By Remark 8.3.3, we have that b is a limit point of A in X with respect
to OX . Moreover, a is a limit point of A in X with respect to OX . For the only
neighbourhood of a in X with respect to OX is X, and we have that b belongs to X.

Example 8.4.2. Let X = {a, b, c, d, e} be a set with five elements. Let OX be the
topology on X given by

{∅, {a}, {b}, {a, b}, {b, e}, {c, d}, {a, b, e}, {a, c, d}, {b, c, d}, {a, b, c, d}, {b, c, d, e}, X} .

Let A = {d}. By Remark 8.3.3, we have that d is a limit point of A in X with respect
to OX . To decide whether the other elements of X are limit points, we look at their
neighbourhoods.

Element Neighbourhoods

a {a}, {a, b}, {a, b, e}, {a, c, d}, {a, b, c, d}, X
b {b}, {a, b}, {b, e}, {a, b, e}, {b, c, d}, {a, b, c, d}, {b, c, d, e}, X
c {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}, {b, c, d, e}, X
e {b, e}, {a, b, e}, {b, c, d, e}, X

For each element, we check whether d belongs to all of its neighbourhoods.

Element Limit Point Neighbourhoods to which d does not belong

a 7 {a}, {a, b}, {a, b, e}
b 7 {b}, {a, b}, {b, e}, {a, b, e}
c 3

e 7 {b, e}, {a, b, e}

To establish that a, b, and e are not limit points, it suffices to observe that any one of
the neighbourhoods listed in the table above does not contain d.

Example 8.4.3. Let (X,OX) be as in Example 8.4.2. Let A = {b, d}. For each of the
elements a, c, and e, we check whether every neighbourhood contains either b or d. The
neighbourhoods are listed in a table in Example 8.4.2.

Element Limit Point Neighbourhoods U such that A ∩ U = ∅

a 7 {a}
c 3

e 3
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Example 8.4.4. Let (X,OX) be (R,OR). Let A = [0, 1[.

0 1

[ [

Let U be a neighbourhood of 1 in R with respect to OR. By definition of OR, there is
an open interval ]a, b[ such that a < 1 < b and which is a subset of U .

0 1

[ [

] [

a b

There is an x ∈ R such that a < x < 1, and 0 < x. In particular, x belongs to [0, 1[.

0 1

[ [

] [

a bx

Since ]a, 1[ is a subset of ]a, b[, and since ]a, b[ is a subset of U , we also have that x
belongs to U . This proves that if U is a neighbourhood of 1 in R with respect to OR,
then [0, 1[ ∩ U is not empty. Thus 1 is a limit point of [0, 1[ in R with respect to OR.

Suppose now that x ∈ R has the property that x > 1.

0 1

[ [

x

Let ε ∈ R be such that 0 < ε ≤ x− 1. Then ]x− ε, x+ ε[ is a neighbourhood of x in R
with respect to OR, but [0, 1[ ∩ ]x− ε, x+ ε[ is empty.

0 1

[ [

x

] [

x− ε x+ ε

Thus x is not a limit point of [0, 1[ in R with respect to OR. In a similar way, one can
demonstrate that if x ∈ R has the property that x < 0, then x is not a limit point of
[0, 1[ in R with respect to OR. This is the topic of Task E8.2.2.
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Example 8.4.5. Let (X,OX) be (R,OR). Let A = Q, the set of rational numbers.
Suppose that x belongs to R. Let U be a neighbourhood of x in R with respect to OR.
By definition of OR, there is an open interval ]a, b[ such that a < x < b which is a subset
of U .

a x b

] [

There is a q ∈ Q such that a < q < x. This is a consequence of the completeness of R.

a x b

] [

q

Since ]a, b[ ∩ Q is a subset of U ∩ Q, we deduce that q belongs to U . We have proven
that, for every neighbourhood U of x in R with respect to OR, U ∩Q is not empty. Thus
x is a limit point of Q in R with respect to OR.

Notation 8.4.6. Suppose that x belongs to R. We denote by bxc the largest integer z
such that z ≤ x. We denote by dxe the smallest integer z such that z ≥ x.

Example 8.4.7. Let (X,OX) be (R,OR). Let A = Z, the set of integers. Suppose that
x belongs to R, and that x is not an integer. Then ]bxc, dxe[ is a neighbourhood of x in
R with respect to OR.

bxc − 1 bxc x dxe dxe+ 1

] [

Moreover Z ∩ ]bxc, dxe[ is empty. Thus x is not a limit point of Z in R with respect to
OR.

Example 8.4.8. Let (X,OX) be (R2,OR2). Let A be the subset of R2 given by{
(x, y) ∈ R2 | ‖(x, y)‖ < 1

}
.
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Suppose that (x, y) ∈ R2 belongs to S1.

(x, y)

Then (x, y) is a limit point of A in R2 with respect to OR2 . Every neighbourhood of
(x, y) in R2 with respect to OR2 contains an ‘open rectangle’ U to which (x, y) belongs.
We have that A ∩ U is not empty.

To fill in the details of this argument is the topic of Task E8.2.3. Suppose now that
(x, y) ∈ R2 does not belong to D2.

(x, y)

Then (x, y) is not a limit point of A in R2 with respect to OR2 . For let ε ∈ R be such
that

0 < ε < ‖(x, y)‖ − 1.

Let Ux be the open interval given by]
x− ε

√
2
ε , x+ ε

√
2
ε

[
.

Let Uy be the open interval given by]
y − ε

√
2
ε , y + ε

√
2
ε

[
.
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Then Ux × Uy is a neighbourhood of (x, y) in R2 whose intersection with A is empty.

To check this is the topic of Task E8.2.4.

8.5. Closure

Definition 8.5.1. Let (X,OX) be a topological space. Let A be a subset of X. The
closure of A in X with respect to OX is the set of limit points of A in X.

Notation 8.5.2. Let (X,OX) be a topological space. Let A be a subset of X. We shall
denote the closure of A in X with respect to OX by cl(X,OX) (A).

Remark 8.5.3. The notation A is also frequently used to denote closure.

Remark 8.5.4. By Remark 8.3.3, we have that A is a subset of cl(X,OX) (A).

Definition 8.5.5. Let (X,OX) be a topological space. A subset A of X is dense in X
with respect to OX if the closure of A in X with respect to OX is X.

8.6. Examples of closure

Example 8.6.1. Let (X,OX) and A be as in Example 8.4.1. We found in Example
8.4.1 that the limit points of A in X with respect to OX are a and b. Hence cl(X,OX) (A)
is X. Thus A is dense in X with respect to OX .

Example 8.6.2. Let (X,OX) and A be as in Example 8.4.2. We found in Example
8.4.2 that cl(X,OX) (A) is {c, d}. Thus A is not dense in X with respect to OX .

Example 8.6.3. Let (X,OX) and A be as in Example 8.4.3. We found in Example
8.4.3 that cl(X,OX) (A) is {b, c, d, e}. Thus A is not dense in X with respect to OX .

Example 8.6.4. We found in Example 8.4.4 that 1 is the only limit point of [0, 1[ in
R with respect to OR which does not belong to [0, 1[. Thus cl(R,OR) ([0, 1[) is [0, 1]. In
particular, [0, 1[ is not dense in R with respect to OR.

Example 8.6.5. We found in Example 8.4.5 that every x ∈ R is a limit point of Q in R
with respect to OR. In other words, cl(R,OR) (Q) is R. Thus Q is dense in R with respect
to OR.
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Example 8.6.6. We found in Example 8.4.7 that if x ∈ R is not an integer, then x is
not a limit point of Z in R with respect to OR. In other words, cl(R,OR) (Z) is Z. In
particular, Z is not dense in R with respect to OR.

Example 8.6.7. Let (X,OX) be (R2,OR2). Let A be as in Example 8.4.8. We found
in Example 8.4.8 that if (x, y) ∈ R2 does not belong to A, then (x, y) is a limit point
of A in R2 with respect to OR2 if and only if (x, y) belongs to S1. We conclude that
cl(R2,OR2 ) (A) is D2. In particular, A is not dense in R2 with respect to OR2 .
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E8.1. Exam questions

Task E8.1.1. For which of the following subsets A of I2 is π(A) a neighbourhood of[(
3
4 ,

3
4

)]
in K2 with respect to OK2? Take the equivalence relation on K2 to be that of

Example 6.4.11.

(1)
]

1
2 , 1
]
×
]

1
2 , 1
]

(2) [0, 1]×
]

1
2 ,

7
8

[

(3)
]

3
4 ,

7
8

[
×
]

1
2 ,

7
8

[

(4)
(]

1
2 ,

7
8

[
×
]

1
2 , 1
])
∪
(]

1
8 ,

1
2

[
×
[
0, 1

3

[)
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(5)
(]

1
2 , 1
]
×
]

1
2 ,

7
8

[)
∪
([

0, 1
4

[
×
]

1
2 ,

7
8

[)
∪
(]

1
3 ,

2
3

[
×
[
0, 1

8

[)

Task E8.1.2. Let X = {a, b, c, d} be a set with four elements. Let OX be the topology
on X given by

{∅, {a}, {a, d}, {b, c}, {a, b, c}, {b, c, d}, X} .

What is the closure of {b} in X with respect to OX? Find a subset A of X with two
elements, neither of which is b, with the property that A is dense in X with respect to
OX .

Task E8.1.3. Let A = ]−∞, 0[ ∪ ]1, 2[ ∪ [3, 5] ∪ ]6, 7].

0 1 2 3 5 6 7

[ ] [ [ ] ] ]

What is the closure of A in R with respect to OR?

Task E8.1.4. Let A be the union of the set{
(x, y) ∈ R2 | −1 < x < 3

4 and ‖(x, y)‖ < 1
}

and the set {
(x, y) ∈ R2 | 3

4 ≤ x < 1 and ‖(x, y)‖ ≤ 1
}
.

What is the closure of A in D2 with respect to OD2?

Task E8.1.5. Let X = ]0, 1[× ]0, 1[. Let OX denote the subspace topology on X with
respect to (R2,OR2).
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Let A =
]

1
4 ,

3
4

[
×
]
0, 1

2

[
.

What is the closure of A in (X,OX)? What is the closure of A in (I2,OI2)?

Find a subset Y of R2 such that the closure of A in Y with respect to OY is
[

1
4 ,

3
4

]
×
]
0, 1

2

[
,

where OY is the subspace topology on Y with respect to (R2,OR2).

Task E8.1.6. Let A =
]

3
4 , 1
[
×
[

1
2 ,

3
4

[
. Let

I2 T 2
π

denote the quotient map.

What is the closure of π(A) in (T 2,OT 2)?

Task E8.1.7. Let A be the subset of R2 given by the union of the sets

⋃
n∈N

{(
1

2n−1
, y

)
| y ∈ [0, 1]

}
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and ⋃
n∈N

{
(x,−2nx+ 2) | x ∈

[
1

2n
,

1

2n−1

]}
.

(1, 0)

(1, 1)

( 1
2 , 0)

( 1
2 , 1)

( 1
4 , 0)

( 1
4 , 1)

( 1
8 , 0)

( 1
8 , 1)

Prove that the closure of X in R2 with respect to OR2 is the union of X and the line
{0} × [0, 1].

(1, 0)

(1, 1)

( 1
2 , 0)

( 1
2 , 1)

( 1
4 , 0)

( 1
4 , 1)

( 1
8 , 0)

( 1
8 , 1)(0, 1)

(0, 0)

Task E8.1.8. Let X = ]1, 2[∪ ]2, 4[. What is the closure of X in R with respect to OR?

1 2 4

] [

] [

E8.2. In the lectures

Task E8.2.1. Prove that (T 2,OT 2) is homeomorphic to (S1×S1,OS1×S1), as discussed
in Example 8.1.4. You may wish to proceed as follows.

(1) As in Example 6.3.1, work with S1 throughout this task as the quotient of I by
the equivalence relation generated by 0 ∼ 1. In particular, think of OS1 as the
quotient topology OI/∼.
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(2) Let

I S1
πS1

denote the quotient map. Appealing to Remark 6.1.9 and Task ??, observe that the
map

I × I S1 × S1
πS1 × πS1

is continuous.

(3) Appealing to Task E6.2.7, deduce from (2) that the map

T 2 S1 × S1
f

given by [(s, t)] 7→ ([s], [t]) is continuous.

(4) Let t ∈ I. Appealing to Task E5.3.14, Task E5.1.5, and Task E5.3.17, observe
that the map

I I2
f0
t

given by s 7→ (t, s) is continuous.

(5) Let

I2 T 2
πT 2

denote the quotient map. Appealing to Task 5.3.1, deduce from (1) and Remark
6.1.9 that the map

I T 2
πT 2 ◦ f0

t

given by s 7→ [(s, t)] is continuous.

(6) Observe that πT 2

(
f0
t (0)

)
= πT 2

(
f0
t (1)

)
. By Task E6.2.7, deduce that the map

S1 T 2
g0
t

given by [s] 7→ [(t, s)] is continuous.
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(7) As in (4) – (6), use the map

I I2
f1
t

given by s 7→ (s, t) to prove that the map

S1 T 2
g1
t

given by [t] 7→ [(s, t)] is continuous.

(8) Let

S1 × S1 T 2
g

denote the map given by ([s], [t]) 7→ [(s, t)]. Observe that g ◦ f = idT 2 , and that
f ◦ g = idS1×S1 .

(9) Let U be a subset of T 2 which belongs to OT 2 . Suppose that ([x], [y]) belongs

to g−1(U). Let Ux denote the subset
(
g1
y

)−1
(U) of S1. By (6), we have that Ux

belongs to OS1 . Let Uy denote the subset
(
g0
x

)−1
(U) of S1. By (5), we have that

Uy belongs to OS1 . Observe that ([x], [y]) belongs to Ux × Uy, and that Ux × Uy is
a subset of g−1(U).

(10) By definition of OS1×S1 , deduce from (8) that g−1(U) belongs to OS1×S1 . Con-
clude that g is continuous.

(11) Observe that (2), (8), and (10) together establish that f is a homeomorphism.

Task E8.2.2. Let x ∈ R be such that x < 0.

0 1

[ [

x

Prove that x is not a limit point of [0, 1[ in R with respect to OR).

Task E8.2.3. Let (X,OX) and A be as in Example 8.4.8. Suppose that (x, y) ∈ R2

belongs to S1,
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(x, y)

Prove that (x, y) is a limit point of A in R2 with respect to OR2 .

Task E8.2.4. Let (X,OX) and A be as in Example 8.4.8. Suppose that (x, y) ∈ R2

does not belong to D2.

(x, y)

Prove that (x, y) is not a limit point of A in R2 with respect to OR2 , following the
argument outlined in Example 8.4.8. You may find it helpful to look back at Example
3.2.3.

E8.3. For a deeper understanding

Task E8.3.1. Let (X,OX). Let U be a subset of X. Prove that U belongs to OX if and
only if, for every x which belongs to X, there is a neighbourhood Ux of x in (X,OX)
such that Ux is a subset of U .

Remark E8.3.2. Task E8.3.1 gives a ‘local characterisation’ of subsets of X which
belong to OX .

Task E8.3.3. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a map. Prove that f is continuous if and only for every x ∈ X, and every neighbour-
hood Uf(x) of f(x) in Y with respect to OY , there is a neighbourhood Ux of x in X with
respect to OX such that f(Ux) is a subset of Uf(x). You may wish to proceed as follows.

(1) Suppose that f satisfies this condition. Let U be a subset of Y which belongs to
OY . Suppose that x belongs f−1(U). Observe that U is a neighbourhood of f(x)
in Y with respect to OY .
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(2) By assumption, there is thus a neighbourhood Ux of x in X with respect to OX
such that f(Ux) is a subset of U . Deduce that Ux is a subset of f−1(U).

(3) By Task E8.3.1, deduce that f−1(U) belongs to OX . Conclude that f is continu-
ous.

(4) Conversely, suppose that f is continuous. Suppose that x belongs to X, and
that Uf(x) is a neighbourhood of f(x) in Y with respect to OY . We have that
f
(
f−1(Uf(x))

)
is a subset of Uf(x). Since f is continuous, observe that f−1(Uf(x))

is moreover a neighbourhood of x in X with respect to OX .

Remark E8.3.4. Task E8.3.3 gives a ‘local characterisation’ of continuous maps.

Definition E8.3.5. Let (X,OX) be a topological space. A set {Aj}j∈J of (possibly
infinitely many) subsets of X is locally finite with respect to OX if, for every x ∈ X,
there is a neighbourhood U of x in (X,OX) with the property that the set of j ∈ J such
that U ∩Aj is non-empty is finite.

Remark E8.3.6. If J is finite, then {Aj}j∈J is locally finite.

Task E8.3.7. Let (X,OX) be a topological space. Let {Vj}j∈J be a set of subsets of
X which is locally finite with respect to OX . Suppose that Vj is closed with respect to
OX , for every j ∈ J . Let K be a (possibly infinite) subset of J . Prove that

⋃
j∈K Vj is

closed with respect to OX . You may wish to proceed as follows.

(1) Let x ∈ X \
(⋃

j∈K Vj

)
. Observe that since {Vj}j∈J is locally finite with respect

to OX , there is a neighbourhood Ux of x in (X,OX) with the property that the set
L of j ∈ J such that Ux ∩ Vj is non-empty is finite.

(2) Let U = Ux ∩
(⋂

j∈LX \ Vj
)

. Prove that U belongs to OX .

(3) Observe that x ∈ U .

(4) Prove that U ∩
(⋃

j∈K Vj

)
is empty, and thus that U is a subset of X \ V .

(5) By Task E8.3.1, deduce that X \
(⋃

j∈K Vj

)
belongs to OX .

Task E8.3.8. Let (X,OX) be a topological space. Let {Vj}j∈J be a locally finite set
of subsets of X, with the property that X =

⋃
j∈J Vj . For every j ∈ J , let OVj denote

the subspace topology on Vj with respect to (X,OX). Suppose that Vj is closed with
respect to OX for every j ∈ J . Let V be a subset of X such that V ∩ Vj is closed with
respect to OVj for every j ∈ J . Prove that V is closed with respect to OX . You may
wish to proceed as follows.

(1) Appealing to Task E2.3.3 (3), observe that V ∩ Vj is closed with respect to OX .

(2) Prove that since {Vj}j∈J is locally finite, so is {V ∩ Vj}j∈J .
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(3) By Task E8.3.7, deduce that
⋃
j∈J V ∩ Vj is closed with respect to OX .

(4) Observe that V =
⋃
j∈J V ∩ Vj .

Task E8.3.9. Let (X,OX) be a topological space. Let {Vj}j∈J be a locally finite set
of subsets of X, with the property that X =

⋃
j∈J Vj . For every j ∈ J , let OVj denote

the subspace topology on Vj with respect to (X,OX). Suppose that Vj is closed with
respect to OX for every j ∈ J . Let U be a subset of X such that U ∩ Vj belongs to OVj
for every j ∈ J . Prove that U belongs to OX . You may wish to proceed as follows.

(1) Since U ∩ Vj belongs to OVj , observe that Vj \ (U ∩ Vj) is closed with respect to
OVj , for every j ∈ J .

(2) Observe that Vj \ (U ∩ Vj) = Vj ∩ (X \ U).

(3) By Task E8.3.8, deduce that X \ U is closed with respect to OX .

Task E8.3.10. Let (X,OX) be a topological space. Let O′X be a topology on X such
that O′X is a subset of OX . Let A be a subset of X. Suppose that x is a limit point of
A in X with respect to OX . Prove that x is a limit point of A in X with respect to O′X .

Task E8.3.11. Let (X,OX) and (Y,OY ) be topological spaces. Let A be a subset of
X, and let B be a subset of Y . Prove that cl(X×Y,OX×Y ) (A×B) is

cl(X,OX) (A)× cl(Y,OY ) (B) .

Task E8.3.12. Let (X,OX) be a topological space. Let A and B be subsets of X such
that A is a subset of B. Prove that cl(X,OX) (A) is a subset of cl(X,OX) (B).

Task E8.3.13. Let (X,OX) be a topological space. Let A be a subset of X. Let OA
denote the subspace topology on A with respect to (X,OX). Let B be a subset of A
which belongs to OX . Prove that cl(A,OA) (B) is A ∩ cl(X,OX) (B). You may wish to
proceed as follows.

(1) Suppose that x belongs to cl(A,OA) (B). In particular, we have that x belongs to
A. Let U be a neighbourhood of x in X with respect to OX . By definition of OA,
observe that A ∩ U is a neighbourhood of x in A with respect to OA.

(2) Since x belongs to cl(A,OA) (B), observe that B ∩ (A ∩ U) is not empty.

(3) Since B∩ (A ∩ U) is (B ∩A)∩U , and since B is a subset of A, deduce that B∩U
is not empty.

(4) Deduce that x belongs to cl(X,OX) (B). Conclude that cl(A,OA) (B) is a subset of
A ∩ cl(X,OX) (B).

(5) Conversely, suppose that x belongs to A ∩ cl(X,OX) (B). Suppose that U is a
neighbourhood of x in A with respect to OA. By definition of OA, observe that
there is a subset U ′ of X which belongs to OX with the property that U = A ∩ U ′.
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(6) Since x belongs to cl(X,OX) (B), observe that B ∩ U ′ is not empty.

(7) Since B is a subset of A, we have that B = B ∩ A. Deduce that (B ∩A) ∩ U ′ =
B ∩ (A ∩ U ′) = B ∩ U is not empty.

(8) Deduce that x belongs to cl(A,OA) (B). Conclude that A∩ cl(X,OX) (B) is a subset
of cl(A,OA) (B).

(9) By (4) and (8), deduce that cl(A,OA) (B) is A ∩ cl(X,OX) (B).
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9.1. A local characterisation of closed sets

Proposition 9.1.1. Let (X,OX) be a topological space. Let V be a subset of X. Then
V is closed with respect to OX if and only if cl(X,OX) (V ) is V .

Proof. Suppose first that V is closed with respect to OX . Suppose that x does not
belong to V . We make the following observations.

(1) By definition of X \ V , we have that x belongs to X \ V . Moreover, since V is
closed with respect to OX , we have that X \ V belongs to OX . In other words,
X \ V is a neighbourhood of x in X with respect to OX .

(2) By definition of X \ V once more, we have that V ∩ (X \ V ) is empty.

Together (1) and (2) establish that x is not a limit point of V in X with respect to OX ,
for any x which does not belong to V . We conclude that cl(X,OX) (V ) is V .

Suppose now that cl(X,OX) (V ) is V . Suppose that x ∈ X does not belong to V . By
definition of cl(X,OX) (V ), we have that x is not a limit point of V in X with respect to
OX . By definition of a limit point, we deduce that there is a neighbourhood Ux of x
such that V ∩ Ux is empty. We make the following observations.

(1) We have that

X \ V =
⋃

x∈X\V

{x}.

We also have that x belongs to Ux for every x ∈ X \V , or, in other words, that {x}
is a subset of Ux for every x ∈ X \ V . Thus we have that

⋃
x∈X\V {x} is a subset of⋃

x∈X\V Ux. We deduce that X \ V is a subset of
⋃
x∈X\V Ux.

(2) We have that

V ∩

 ⋃
x∈X\V

Ux

 =
⋃

x∈X\V

(V ∩ Ux) .

Since V ∩Ux is empty for every x ∈ X \V , we have that
⋃
x∈X\V (V ∩ Ux) is empty.

We deduce that V ∩
(⋃

x∈X\V Ux

)
is empty. In other words,

⋃
x∈X\V Ux is a subset

of X \ V .

(3) Since Ux belongs to OX , for every x ∈ X \ V , and since OX is a topology on X,
we have that

⋃
x∈X\V Ux belongs to OX .
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By (1) and (2) together, we have that
⋃
x∈X\V Ux = X \ V . By (3), we deduce that

X \ V belongs to OX . Thus V is closed with respect to OX .

Remark 9.1.2. We now, by Proposition 9.1.1, have two ways to understand closed sets.
The first is ‘global’ in nature: that X \V belongs to OX . The second is ‘local’ in nature:
that every limit point of V belongs to V .

For certain purposes in mathematics it can be appropriate to work ‘locally’, whilst
for others it can be appropriate to work ‘globally’. To know that ‘local’ and ‘global’
variants of a particular mathematical concept coincide allows us to move backwards and
forwards between these points of view. This is often a very powerful technique.

9.2. Boundary

Definition 9.2.1. Let (X,OX) be a topological space. Let A be a subset of X. The
boundary of A in X with respect to OX is the set of x ∈ X such that, for every neigh-
bourhood U of x in X with respect to OX , there is an a ∈ U which belongs to A, and
there is a y ∈ U which belongs to X \A.

Notation 9.2.2. Let (X,OX) be a topological space. Let A be a subset of X. We shall
denote the boundary of A in X with respect to OX by ∂(X,OX)A.

Remark 9.2.3. Suppose that x ∈ X belongs to ∂(X,OX)A. Then x is a limit point of A
in X with respect to OX .

Remark 9.2.4. Let x be a limit point of A which does not belong to A. Then x belongs
to ∂(X,OX)A.

� However, as we shall see in Example 9.3.1, it is not necessarily the case that if a
belongs to A, then a belongs to ∂(X,OX)A. In particular, not every limit point of A

belongs to ∂(X,OX)A.

9.3. Boundary in a finite example

Example 9.3.1. , Let X = {a, b, c, d, e} be a set with five elements. Let OX be the
topology on X given by

{∅, {a}, {b}, {a, b}, {b, e}, {c, d}, {a, b, e}, {a, c, d}, {b, c, d}, {a, b, c, d}, {b, c, d, e}, X} .

Let A = {b, d}. The neighbourhoods in X with respect to OX of each of the elements
of A are listed in a table in Example 8.4.2. To determine ∂(X,OX)A, we check, for each
element of A, whether each of its neighbourhoods both contain either a, c, or e, and
contain either b or d. We determined the limit points of A in X with respect to OX in
Example 8.4.2, which saves us a little work.
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Element Belongs to ∂(X,OX)A? Reason

a 7 Not a limit point.
b 7 The neighbourhood {b} does not contain any

element of X \A.
c 3 Limit point which does not belong to A.
d 3 Every neighbourhood of d contains both c and

d. We have that d belongs to A, and that c
belongs to X \A.

e 3 Limit point which does not belong to A.

Thus ∂(X,OX)A = {c, d, e}.

9.4. Geometric examples of boundary

Example 9.4.1. Let (X,OX) be (R,OR). Let A = [0, 1[.

0 1

[ [

By Example 8.4.4, we have that 1 is a limit point of [0, 1[ in R with respect to OR which
does not belong to [0, 1[. Thus 1 belongs to ∂(R,OR) [0, 1[. By Example ??, we have that
all other limit points of [0, 1[ in R with respect to OR belong to [0, 1[. To determine
∂(R,OR) [0, 1[, it therefore remains to check which elements of [0, 1[ have the property
that each of their neighbourhoods contains at least one element of R \ [0, 1[.

Let U be a neighbourhood of 0 in R with respect to OR. By definition of OR, there is
an open interval ]a, b[ such that a < 0 < b, and which is a subset of U .

0 1

[ [

] [

a b

There is an x ∈ R such that a < x < 0. In particular, x belongs to R \ [0, 1[.

0 1

[ [

] [

a bx
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Since ]a, 0[ is a subset of ]a, b[, and since ]a, b[ is a subset of U , we also have that x
belongs to U . This proves that if U is a neighbourhood of 0 in R with respect to OR,
then (R \ [0, 1[) ∩ U is not empty. Thus 0 belongs to ∂(R,OR) [0, 1[.

Suppose now that 0 < x < 1.

0 1

[ [

x

Let 0 < ε ≤ min{x, 1−x}. Then ]x− ε, x+ ε[ is a neighbourhood of x in R with respect
to OR, and (R \ [0, 1[) ∩ ]x− ε, x+ ε[ is empty.

0 1

[ [

] [

x− ε x+ εx

Thus x does not belong to ∂(R,OR) [0, 1[. We conclude that ∂(R,OR) [0, 1[ is {0, 1}.

Example 9.4.2. Let (X,OX) be (R2,OR2). Let A = D2.

Suppose that (x, y) belongs to R2 \D2.

(x, y)

Let ε ∈ R be such that

0 < ε < ‖(x, y)‖ − 1.
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Let Ux be the open interval given by]
x− ε

√
2
ε , x+ ε

√
2
ε

[
.

Let Uy be the open interval given by]
y − ε

√
2
ε , y + ε

√
2
ε

[
.

Then Ux × Uy is a neighbourhood of (x, y) in R2 whose intersection with D2 is empty.

This can be proven by the same argument as is needed to carry out Task E8.2.4. Thus
(x, y) is not a limit point of D2 in R2 with respect to OR2 . In particular, (x, y) does not
belong to ∂(R2,OR2 )D

2.

Suppose now that (x, y) ∈ R2 has the property that ‖(x, y)‖ < 1.

(x, y)

Let ε ∈ R be such that
0 < ε < 1− ‖(x, y)‖ .

Let Ux be the open interval given by]
x− ε

√
2
ε , x+ ε

√
2
ε

[
.

Let Uy be the open interval given by]
y − ε

√
2
ε , y + ε

√
2
ε

[
.

Then Ux × Uy is a neighbourhood of (x, y) in R2 whose intersection with D2 is empty.
To check this is Task E9.2.2.
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In other words,
(
R2 \D2

)
∩(Ux × Uy) is empty. Thus (x, y) does not belong to ∂(R2,OR2 )D

2.

Suppose now that ‖(x, y)‖ = 1. In other words, we have that (x, y) belongs to S1.

(x, y)

Every neighbourhood of (x, y) in R2 with respect to OR2 contains an ‘open rectangle’ U
to which (x, y) belongs. Both D2 ∩ U and

(
R2 \D2

)
∩ U are not empty.

Thus (x, y) belongs to ∂(R2,OR2 )D
2. To fill in the details of this argument is the topic of

Task E9.2.4. We conclude that ∂(R2,OR2 )D
2 is S1.

Example 9.4.3. Let (X,OX) be (R2,OR2). Let A = I2.

Then ∂(R2,OR2 )I
2 is the ‘border around I2’.
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In other words, ∂(R2,OR2 )I
2 is ({0, 1} × I) ∪ (I × {0, 1}). To prove this is the topic of

Task E9.2.3.

Example 9.4.4. Let (X,OX) be (R2,OR2). Let A be an annulus Ak, for some k ∈ R
with 0 < k < 1, as in Notation 4.1.17.

Then ∂(R2,OR2 )Ak is the union of the outer and the inner circle of Ak. In other words,
the union of the set {

(x, y) ∈ R2 | ‖(x, y)‖ = 1
}

and the set {
(x, y) ∈ R2 | ‖(x, y)‖ = k

}
.

To prove this is the topic of Task E9.2.5. Suppose, for instance, that (x, y) ∈ R2 belongs
to the inner circle of Ak.

(x, y)
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Every neighourhood of (x, y) contains an ‘open rectangle’ around (x, y) which overlaps
both Ak and the open disc which we can think of as having been cut out from D2 to
obtain Ak.

Example 9.4.5. Let (X,OX) be (D2,OD2). Let A be an annulus Ak as in Example
9.4.4.

Then ∂(D2,OD2 )Ak is the inner circle of Ak.

To prove this is the topic of Task E9.2.6. In particular if (x, y) ∈ S1 then, unlike in
Example 9.4.4, (x, y) does not belong to ∂(D2,OD2 )Ak. For there is a neighbourhood of

(x, y) in D2 with respect to OD2 which does not overlap D2 \ Ak, the open disc which
we can think of as having cut out of D2 to obtain Ak.
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� Example 9.4.4 and Example 9.4.5 demonstrate that given a set A, and a topological
space (X,OX) such that A is a subset of X, the boundary of A in X with respect

to OX depends upon (X,OX). The next examples illustrate this further.

Example 9.4.6. Let (X,OX) be (R2,OR2). Let T denote the subset of R2 given by the
union of

{(0, y) | 0 ≤ y ≤ 1}

and

{(x, 1) | −1 ≤ x ≤ 1} .

Then ∂XT is T. We have that T2 is closed in R2. To prove this is the topic of Task
E9.2.7. Thus every limit point of T2 belongs to T. Suppose that (x, y) belongs to T.

(x, y)

Then the intersection with R2 \ T of every neighbourhood of (x, y) in R2 is not empty.
To prove this is the topic of Task E9.2.8.

Example 9.4.7. Let X be the subset of R2 given by the union of

{(0, y) | −1 ≤ y ≤ 2}

and

{(x, 1) | −2 ≤ x ≤ 2} .
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Let OX denote the subspace topology on X with respect to (R2,OR2). Let T be as in
Example 9.4.6.

Then ∂(X,OX)T is {(−1, 1), (0, 1), (1, 1), (0, 0)}.

Every neighbourhood of each of these four points contains both a segment of X \T and
a segment of T. A typical neighbourhood of (−1, 1), for instance, is the intersection of
an ‘open rectangle’ around (−1, 1) in R2 with T as depicted below.
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Let (x, y) be a point of T which is not one of these four.

(x, y)

Then we can find a neighbourhood of (x, y) whose intersection with X \T is empty. For
instance, an intersection of a sufficiently small ‘open rectangle’ around (x, y) in R2 with
X.

Suppose that (x, y) ∈ X does not belong to T.
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(x, y)

Then we can find a neighbourhood of (x, y) whose intersection with X \T is empty. For
instance, an intersection of a sufficiently small ‘open rectangle’ around (x, y) in R2 with
X.

To fill in the details of this argument is the topic of Task E9.2.9.

Example 9.4.8. Let X be the subset of R2 given by the union of

{(0, y) | −2 ≤ y ≤ 1}

and
{(x, 1) | −2 ≤ x ≤ 2} .

Let OX denote the subspace topology on X with respect to (R2,OR2). Let T be as in
Example 9.4.6.
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Then ∂(X,OX)T is {(−1, 1), (1, 1), (0, 0)}.

In particular (0, 1) does not belong to ∂(X,OX)T, unlike in Example 9.4.7. We can find a
neighbourhood of (0, 1) whose intersection with X \T is empty, such as the intersection
of a sufficiently small ‘open rectangle’ around (0, 1) in R2 with X.

To give the details of the calculation of ∂(X,OX)T is the topic of Task E9.2.10.

9.5. Connected topological spaces

Terminology 9.5.1. Let X be a set. Let X0 and X1 be subsets of X. The union
X0 ∪X1 of X0 and X1 is disjoint if X0 ∩X1 is the empty set.

Notation 9.5.2. Let X be a set. Let X0 and X1 be subsets of X. If X = X0 ∪X1, and
this union is disjoint, we write X = X0 tX1.

Definition 9.5.3. A topological space (X,OX) is connected if there do not exist subsets
X0 and X1 of X such that the following hold.

(1) Neither X0 nor X1 is empty, and both belong to OX .

(2 We have that X = X0 tX1.
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9.6. An example of a topological space which is not connected

Remark 9.6.1. We shall have to work quite hard to prove that any of our geometric
examples of topological spaces are connected. Instead, we shall begin with some examples
of topological spaces which are not connected.

Example 9.6.2. Let X = [1, 2] ∪ [4, 7].

1 2

[ ]

4 7

[ ]

Let OX denote the subspace topology on X with respect to (R,OR). The following hold.

(1) By Example 1.6.3, we have that ]0, 3[ belongs to OR. We have that [1, 2] =
X ∩ ]0, 3[.

1 2

[ ]

4 7

[ ]

0 3

] [

By definition of OX , we deduce that [1, 2] belongs to OX .

(2) By Example 1.6.3, we have that ]3, 8[ belongs to OR. We have that [4, 7] =
X ∩ ]3, 8[.

1 2

[ ]

4 7

[ ]

3 8

] [

By definition of OX , we conclude that [4, 7] belongs to OX .

(3) We have that X = [1, 2] t [4, 7], since [1, 2] ∩ [4, 7] is empty.

We conclude that (X,OX) is not connected.

Remark 9.6.3. In (1), we could have chosen instead of ]0, 3[ any subset of R which
belongs to OR, which does not intersect [4, 7], and of which [1, 2] is a subset. In (2), we
could have chosen instead of ]3, 8[ any subset of R which belongs to OR, which does not
intersect [1, 2], and of which [4, 7] is a subset.
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E9.1. Exam questions

Task E9.1.1. We saw in Example 9.4.1 that ∂(R,OR) [0, 1[ is {0, 1}.

0 1

[ [

Prove that {0, 1} is also the boundary of each of ]0, 1[, ]0, 1], and [0, 1] in R with respect
to OR.

Task E9.1.2. Let A be the subset of R2 given by the union of ]0, 1[× ]0, 1[ and [−1, 0[×
]0, 1[.

(1) What is the boundary of A in R2 with respect to OR2?

(2) What is the boundary of A in R × ]0,∞[, where R × ]0,∞[ is equipped with the
subspace topology with respect to (R2,OR2)?

(3) Let X be the union of ]−∞, 0[× R and ]0,∞[× R. Let OX denote the subspace
topology on X with respect to (R2,OR2). What is the boundary of A in X with
respect to OX?

Task E9.1.3. Let (X,OX) be as in Task E8.1.2. What is the boundary of {a, c} in X
with respect to OX? What is the boundary of {b, c} in X with respect to OX? What is
the boundary of {d} in X with respect to OX?

Task E9.1.4. Let X be the subset of R2 which is a ‘solid triangle’.
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Let A be the subset of X depicted below. All of the lines, and the entire shaded area,
belong to A.

In other words, A is obtained from X by cutting out the inside of smaller ‘solid triangle’
inside it. What is ∂(R2,OR2 )A? What is ∂(X,OX)A, where OX is the subspace topology

on X with respect to (R2,OR2)?

Task E9.1.5. What is the boundary of D2 × I in R3 with respect to OR3?

Give a proof by appealing to Example 9.4.2, Task E9.1.1, and Task E9.3.11. What is the
boundary of D2 × I in R2 × I with respect to OR2×I? What is the boundary of D2 × I
in D2 × R with respect to OD2×R?

Task E9.1.6 (Continuation exam, August 2013). Let X be a subset of R2 as depicted
below. In other words, we have two triangles which ‘meet at their tips’.

Let A be the subset of X obtained by removing the inside of a smaller copy of this shape,
as depicted below. All of the lines, and the entirety of both shaded areas, belong to A.
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What is ∂(R2,OR2 )A? What is ∂(X,OX)A?

Task E9.1.7. What is the boundary of Q in R with respect to OR?

Task E9.1.8. Let A be the subset of D2 of Task E8.1.4.

What is the boundary of A in D2 with respect to OD2?

Task E9.1.9. View the letter K as a subset of R2.

For each of the following, find a subset X of R2 such that K is a subset of X, and
such that ∂(X,OX)K is as described, where OX denotes the subspace topology on X with
respect to (R2,OR2).

(1) We have that ∂(X,OX)K consists of the four points depicted below.
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(2) We have that ∂(X,OX)K consists of the two points depicted below.

(3) We have that ∂(X,OX)K consists of the five points depicted below.

(4) We have that ∂(X,OX)K consists of the union of the two lines depicted below.

Task E9.1.10. Let (X,OX) be a topological space. Explain why ∂(X,OX)X is the empty
set.

Task E9.1.11. Let X be the union of D2 and [3, 4]× ]2, 3[.

Let OX denote the subspace topology on X with respect to (R2,OR2). Prove that
(X,OX) is not connected.
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Task E9.1.12. Let X be the subset of I2 given by the union of
[
0, 1

4

]
×
[
0, 1

4

]
and[

1
2 ,

3
4

]
×
[

3
4 , 1
]
.

Let

I2 T 2
π

be the quotient map. Let Oπ(X) denote the subspace topology on π(X) with respect to
(T 2,OT 2). Prove that

(
π(X),Oπ(X)

)
is not connected.

E9.2. In the lecture notes

Task E9.2.1. Do the same as in Task E2.2.2 for the proof of Proposition 9.1.1.

Task E9.2.2. Let (x, y) ∈ R2 be such that ‖(x, y)‖ < 1.

(x, y)

Prove that (x, y) does not belong to ∂(R2,OR2 )D
2, following the argument outlined in

Example 9.4.2. You may find it helpful to look back at Example 3.2.3.

Task E9.2.3. It was asserted in Example 9.4.3 that ∂(R2,OR2 )I
2 is

({0, 1} × I) ∪ (I × {0, 1}) .

Prove this first as follows, along the lines of Example 9.4.2.
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(1) Demonstrate that if (x, y) ∈ R2 does not belong to I2, then (x, y) is not a limit
point of I2 in R2 with respect to OR2 .

(2) Demonstrate that if 0 < x < 1 and 0 < y < 1, then there is a neighbourhood U
of (x, y) in R2 with respect to OR2 such that

(
R2 \ I2

)
∩ U is empty.

(3) Demonstrate that if (x, y) belongs to

({0, 1} × I) ∪ (I × {0, 1}) ,

then every neighbourhood U of (x, y) in R2 has the property that both I2 ∩ U and(
R2 \ I2

)
∩ U are not empty.

Give a second proof by appealing to Task E9.3.11. Give a third proof by appealing to
Task E7.2.9 and Task E9.3.12.

Task E9.2.4. Let (X,OX) and A be as in Example 8.4.8. Suppose that (x, y) ∈ R2

belongs to S1.

(x, y)

Prove that (x, y) belongs to ∂(R2,OR2 )D
2.

Task E9.2.5. Let A be an annulus Ak, for some k ∈ R with 0 < k < 1, as in Notation
4.1.17.

Prove that ∂(R2,OR2 )Ak is the union of the outer and the inner circle of the annulus, as
claimed in Example 9.4.4. You may wish to proceed as follows.

(1) Let B be the ‘open disc’ of radius k centred at (0, 0).
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Demonstrate that ∂(R2,OR2 )B is the circle of radius k centred at (0, 0).

(2) Observing that Ak is D2 \B, appeal to Example 9.4.2 and Task E9.3.15.

Task E9.2.6. Let A be an annulus Ak, for some k ∈ R with 0 < k < 1, as in Notation
4.1.17.

Prove that ∂(D2,OD2 )Ak is the inner circle of the annulus, as claimed in Example 9.4.5.
You may wish to proceed as follows.

(1) Let B be the ‘open disc’ of radius k centred at (0, 0).

Appealing to (1) of Task E9.2.5and Task E9.3.13, observe that ∂(D2,OD2 )B is the
circle of radius k centred at (0, 0).

(2) Appeal to Task E9.1.10 and Task E9.3.15.

Task E9.2.7. Let T be the subset of R2 of Example 9.4.6.

Prove that T is closed in R2 with respect to OR2 . You may wish to proceed as follows.

(1) Observe that T is the union of {0} × [0, 1] and [0, 1]× {1}.
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(2) Appealing to Task E3.3.1, observe that {0}× [0, 1] and [0, 1]×{1} are both closed
in R2 with respect to OR2 .

(3) Appealing to Task E9.3.5, conclude from (1) and (2) that T is closed in R2 with
respect to OR2 .

Task E9.2.8. Let T be the subset of R2 of Example 9.4.6.

Prove that ∂(R2,OR2 )T is T. You may wish to follow the argument outlined in Example
9.4.6.

Task E9.2.9. Let (X,OX) and T be as in Example 9.4.7.

Prove that ∂(X,OX)T is {(−1, 1), (0, 1), (1, 1), (0, 0)}. You may wish to follow the argu-
ment outlined in Example 9.4.7.

Task E9.2.10. Let (X,OX) and T be as in Example 9.4.8.

Prove that ∂(X,OX)T is {(−1, 1), (1, 1), (0, 0)}.
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E9.3. For a deeper understanding

Task E9.3.1. Let (X,OX) be a topological space. Let V be a subset of X which is
closed with respect to OX . Let A be a subset of V . Prove that cl(X,OX) (A) is a subset
of V . You may wish to appeal to Proposition 9.1.1.

Task E9.3.2. Let (X,OX) be a topological space. Let A be a subset of X. Prove
that cl(X,OX) (A) is equal to the intersection of all subsets V of X with the following
properties.

(1) V is closed with respect to OX .

(2) A is a subset of V .

You may wish to appeal to Task E9.3.1.

Corollary E9.3.3. Let (X,OX) be a topological space. Let A be a subset of X. Then
cl(X,OX) (A) is closed.

Proof. Follows immediately from Task E9.3.2 and the fact, observed as part of Remark
E1.3.2, that an intersection of (possibly infinitely many) subsets of X which are closed
with respect to OX is closed with respect to OX .

Remark E9.3.4. In other words, cl(X,OX) (A) is the smallest subset of X which contains
A, and which is closed with respect to OX .

Task E9.3.5. Let (X,OX) be a topological space. Let A and B be subsets of X. Prove
that cl(X,OX) (A ∪B) is cl(X,OX) (A)∪ cl(X,OX) (B). You may wish to proceed as follows.

(1) By Corollary E9.3.3, we have cl(X,OX) (A) and cl(X,OX) (B) are closed with respect
to OX . By Remark E1.3.2, we thus have that cl(X,OX) (A) ∪ cl(X,OX) (B) is closed
with respect to OX . Deduce by Task E9.3.1 that cl(X,OX) (A ∪B) is a subset of
cl(X,OX) (A) ∪ cl(X,OX) (B).

(2) Observe that if x ∈ X is a limit point of A or B in X with respect to OX , then x
is a limit point of A ∪B in X with respect to OX .

Task E9.3.6. Let (X,OX) be a topological space. Let {Ai}i∈I be an infinite set of
subsets of X. Give an example to demonstrate that cl(X,OX) (∪i∈IAi) is not necessarily
∪i∈Icl(X,OX) (Ai).

Task E9.3.7. Let (X,OX) be a topological space. Let A and B be subsets of X. Prove
that cl(X,OX) (A ∩B) is a subset of cl(X,OX) (A) ∩ cl(X,OX) (B).

Task E9.3.8. Let (X,OX) be a topological space. Let A and B be subsets of X. Give
an example to demonstrate that cl(X,OX) (A)∩ cl(X,OX) (B) is not necessarily a subset of
cl(X,OX) (A ∩B). In particular, these sets are not necessarily equal.
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Task E9.3.9. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a map. Prove that f is continuous if and only if for every subset A of X, we have
that f

(
cl(X,OX) (A)

)
is a subset of cl(Y,OY ) (f(A)). You may wish to proceed as follows.

(1) Suppose that the condition holds. Let V be a subset of Y which is closed with
respect to OY . By one of the relations of Table A.2, observe that cl(X,OX)

(
f−1 (V )

)
is a subset of

f−1
(
f
(
cl(X,OX)

(
f−1 (V )

)))
.

(2) By hypothesis, we have that f
(
cl(X,OX)

(
f−1 (V )

))
is a subset of

cl(Y,OY )

(
f
(
f−1(V )

))
.

By one of the relations of Table A.2, deduce that

f−1
(
f
(
cl(X,OX)

(
f−1 (V )

)))
is a subset of

f−1
(
cl(Y,OY )

(
f
(
f−1(V )

)))
.

(3) By (1) and (2), deduce that cl(X,OX)

(
f−1 (V )

)
is a subset of

f−1
(
cl(Y,OY )

(
f
(
f−1(V )

)))
.

(4) By one of the relations of Table A.2, observe that f
(
f−1(V )

)
is a subset of V .

By Task E8.3.12, deduce that cl(Y,OY )

(
f
(
f−1(V )

))
is a subset of cl(Y,OY ) (V ).

(5) Since V is closed in Y with respect to OY , we have by Proposition 9.1.1 that
V = cl(Y,OY ) (V ). By (4), deduce that cl(Y,OY )

(
f
(
f−1(V )

))
is a subset of V .

(6) By (5) and one of the relations of Table A.2, deduce that f−1
(
cl(Y,OY )

(
f
(
f−1(V )

)))
is a subset of f−1(V ).

(7) By (3) and (6), deduce that cl(X,OX)

(
f−1 (V )

)
is a subset of f−1(V ).

(8) By Remark 8.5.4, we have that f−1(V ) is a subset of cl(X,OX)

(
f−1 (V )

)
. By (7),

deduce that cl(X,OX)

(
f−1 (V )

)
= V .

(9) By Proposition 9.1.1, deduce that f−1(V ) is closed in X with respect to OX . By
Task ??, conclude that f is continuous.

(10) Conversely, suppose that f is continuous. Suppose that x is a limit point of A in
X with respect to OX . Let Uf(x) be a neighbourhood of f(x) in Y with respect to
OY . Since f is continuous, observe that, by Task E8.3.3, there is a neighbourhood
Ux of x in X with respect to OX such that f(Ux) is a subset of Uf(x).
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(11) Since x is a limit point of A in X with respect to OX , we have that Ux∩A is not
empty. Thus f(Ux ∩A) is not empty. Since f(Ux ∩A) is a subset of f(Ux) ∩ f(A),
deduce that f(Ux) ∩ f(A) is not empty.

(12) Since f(Ux) is a subset of Uf(x), deduce that Uf(x) ∩ f(A) is not empty.

(13) Conclude that f(x) is a limit point of f(A) in Y with respect to OY . Thus
f
(
cl(X,OX) (A)

)
is a subset of cl(Y,OY ) (f(A)).

Task E9.3.10. Let (X,OX) be a topological space. Let A be a subset of X. Prove that
∂(X,OX)A is the intersection of cl(X,OX) (A) and cl(X,OX) (X \A).

Task E9.3.11. Let (X,OX) and (Y,OY ) be topological spaces. Let A be a subset of
X, and let B be a subset of Y . Prove that ∂(X×Y,OX×Y )A×B is the union of(

∂(X,OX)A
)
× cl(Y,OY ) (B)

and
cl(X,OX) (A)×

(
∂(Y,OY )B

)
.

For proving that ∂(X×Y,OX×Y )A×B is a subset of this union, you may wish to make use
of one of the set theoretic equalities listed in Remark A.1.1.

Task E9.3.12. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a homeomorphism. Let A be a subset of X. Prove that ∂(Y,OY )f(A) is f
(
∂(X,OX)A

)
.

You may wish to proceed as follows.

(1) Suppose that y belongs to ∂(Y,OY )f(A). Let U be a neighbourhood of f−1(y)
in X with respect to OX . Observe that since f is a homeomophism, f(U) is a
neighbourhood of y in Y with respect to OY .

(2) We have that

f−1 (f(A) ∩ f(U)) = f−1 (f(A)) ∩ f−1 (f(U)) .

Since f is a bijection, we have that f−1 (f(A)) = A, and that f−1 (f(U)) = U .
Deduce that

f−1 (f(A) ∩ f(U)) = A ∩ U.

(3) Observe that by (1) and the fact that y belongs to ∂(Y,OY )f(A), we have that
f(A) ∩ f(U) is not empty. Conclude by means of (2) that A ∩ U is not empty.

(4) We have that

f−1 ((Y \ f(A)) ∩ f(U)) = f−1 (Y \ f(A)) ∩ f−1 (f(U))

=
(
X \ f−1 (f(A))

)
∩ f−1 (f(U)) .

In a similar manner as in (2) and (3), deduce that (X \A) ∩ U is not empty.
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(5) Observe that (2) and (3) demonstrate that f−1(y) belongs to ∂(X,OX)A. Conclude
that y belongs to f

(
∂(X,OX)A

)
. Thus we have proven that ∂(Y,OY )f(A) is a subset

of f
(
∂(X,OX)A

)
.

(6) Suppose now that x belongs to ∂(X,OX)A. Let U be a neighbourhood of f(x) in Y
with respect to OY . Observe that then f−1(U) is a neighbourhood of x in X with
respect to OX .

(7) Since x belongs to ∂(X,OX)A, we have that A ∩ f−1U is not empty. Thus

f
(
A ∩ f−1(U)

)
is not empty. We have that f

(
A ∩ f−1(U)

)
is a subset of

f(A) ∩ f
(
f−1(U)

)
.

Since f is a surjection, we also have that f
(
f−1(U)

)
= U . Deduce that f(A) ∩ U

is not empty.

(8) Since x belongs to ∂(X,OX)A, we have that (X \A)∩ f−1U is not empty. Observe
that since f is a bijection, we have that f(X \A) = Y \ f(A). In a similar manner
as in (6), deduce that (Y \ f(A)) ∩ U is not empty.

(9) Observe that (7) and (8) demonstrate that f(x) belongs to ∂(Y,OY )f(A). Thus we
have proven that f

(
∂(X,OX)A

)
is a subset of ∂(Y,OY )f(A).

(10) Conclude from (5) and (9) that f
(
∂(X,OX)A

)
is ∂(Y,OY )f(A).

Task E9.3.13. Let (X,OX) be a topological space. Let A be a subset of X. Let OA
denote the subspace topology on A with respect to (X,OX). Let B be a subset of A
which belongs to OX . Prove that ∂(A,OA)B is A ∩ ∂(X,OX)B. You may wish to proceed
as follows.

(1) By Task E9.3.10, we have that ∂(A,OA)B is the intersection of cl(A,OA) (B) and
cl(A,OA) (A \B).

(2) Observe that since B belongs to OX , and since B is a subset of A, we have that B
belongs to OA. Thus A\B is closed in A with respect to OA. Deduce by Proposition
9.1.1 that cl(A,OA) (A \B) is A \B.

(3) Since B belongs to OX , we have that X \B is closed in X with respect to OX . De-
duce by Proposition 9.1.1 that cl(X,OX) (X \B) is X \B. Thus A∩ cl(X,OX) (X \B)
is A \B.

(4) Observe that by (2) and (3), we have that cl(A,OA) (A \B) is A∩ cl(X,OX) (X \B).

(5) Observe that by Task E8.3.13, we have that cl(A,OA) (B) is A ∩ cl(X,OX) (B).

(6) By (1), (4), and (5), conclude that ∂(A,OA)B isA∩
(
cl(X,OX) (X \B) ∩ cl(X,OX) (B)

)
.
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(7) Conclude by Task E9.3.10 that ∂(A,OA)B is A ∩ ∂(X,OX)B.

Task E9.3.14. Let (X,OX) be a topological space. Let A be a subset of X, and let B
be a subset of A. Prove that ∂(X,OX)(A \ B) is a subset of the union of ∂(X,OX)A and
∂(X,OX)B. You may wish to proceed as follows.

(1) Suppose that x belongs to ∂(X,OX) (A \B). Suppose first that every neighbour-
hood U of x in X with respect to OX has the property that (X \A) ∩ U is not
empty. Since x belongs ∂(X,OX) (A \B), we also have that (A \B)∩U is not empty.
In particular, A ∩ U is not empty. Deduce that x belongs to ∂(X,OX)A.

(2) Suppose instead that there is a neighbourhood U of x in X with respect to OX
such that (X \A)∩U is empty. We have that X \ (A \B) is the union of X \A and
B. Since x belongs ∂(X,OX) (A \B), we have that (X \ (A \B)) ∩ U is not empty.
Deduce that B ∩ U is not empty.

(3) Let U ′ be any neighbourhood of x in X with respect to OX . Suppose that B ∩U ′
is empty. We have that U ∩ U ′ is a neighbourhood of x in X with respect to OX .
Moreover, observe that (X \A)∩(U ∩ U ′) is empty, and that B∩(U ∩ U ′) is empty.
Conclude that B ∩ U ′ is not empty.

(4) Since x belongs to ∂(X,OX) (A \B), we have that (A \B) ∩ U ′ is not empty. In
particular, we have that (X \B) ∩ U ′ is not empty.

(5) Observe that, by (2) – (4), if there is a neighbourhood U of x in X with respect
to OX such that (X \A) ∩ U is empty, then x belongs to ∂(X,OX)B.

(6) Observe that, by (1) and (5), we have that ∂(X,OX) (A \B) is a subset of the union
of ∂(X,OX)A and ∂(X,OX)B.

Task E9.3.15. Let (X,OX) be a topological space. Let A be a subset of X which is
closed with respect to OX . Let B be a subset of X which belongs to OX . Prove that
∂(X,OX)(A \ B) is the union of ∂(X,OX)A and ∂(X,OX)B. You may wish to proceed as
follows.

(1) Observe that, by Task E9.3.14, we have that ∂(X,OX) (A \B) is a subset of the
union of ∂(X,OX)A and ∂(X,OX)B.

(2) Since B is a subset of A, we have that X \ A is a subset of X \ B. Deduce that
(X \A) ∩B is empty.

(3) Suppose that x ∈ X belongs to B. Then B is a neighbourhood of x in X with
respect to OX . Deduce by (2) that x does not belong to ∂(X,OX)A.

(4) Suppose that x ∈ X belongs to X \A. Since A is closed in X with respect to OX ,
we then have that X \A is a neighbourhood of x in X with respect to OX . Deduce
that x does not belong to ∂(X,OX)A.
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(5) Suppose that x belongs to ∂(X,OX)A. By (3) and (4), we have that x belongs to
A\B. Let U be a neighbourhood of x in X with respect to OX . Observe that since
x belongs to A \B, we have that (A \B) ∩ U is not empty.

(6) Since x belongs to ∂(X,OX)A, we also have that (X \A) ∩ U is not empty. We
have that X \ (A \B) is the union of X \A and B. Deduce that (X \ (A \B))∩U
is not empty.

(7) Conclude from (5) and (6) that if x belongs to ∂(X,OX)A, then x belongs to
∂(X,OX) (A \B).

(8) Arguing in a similar way, prove that if x belongs to ∂(X,OX)B, then x belongs to
∂(X,OX) (A \B).

(9) By (7) and (8), we have that the union of ∂(X,OX)A and ∂(X,OX)B is a subset of
∂(X,OX) (A \B). Conclude by (1) that the union of ∂(X,OX)A and ∂(X,OX)B is equal
to ∂(X,OX) (A \B).

E9.4. Exploration — limit points in a metric space

Task E9.4.1. Let (X, d) be a metric space. Let Od be the topology on X corresponding
to d of Task E3.4.9. Let A be a subset of X. Suppose that x belongs to X. Prove that
x is a limit point of A in X with respect to Od if and only if, for every ε ∈ R such that
ε > 0, there is an a which belongs to A such that d(x, a) < ε. You may wish to proceed
as follows.

(1) Suppose that x is a limit point of A in X with respect to Od. By Task E4.3.2,
we have that Bε(x) is a neighourhood of x in X with respect to Od. Deduce that
A ∩ Bε(x) is not empty, and thus that there is an a which belongs to A such that
d(x, a) < ε.

(2) Suppose instead that, for every ε ∈ R such that ε > 0, there is an a which belongs
to A such that d(x, a) < ε. Let U be a neighbourhood of x in X with respect to
Od. By definition of Od, there is a ζ ∈ R with ε > 0 such that Bζ(x) is a subset of
U . By assumption, there is an a in A such that a belongs to Bζ(x). Deduce that
A ∩ U is not empty. Conclude that that x is a limit point of A in X with respect
to Od.

Task E9.4.2. Let (X, d) be a metric space. Let A be a subset of X. Suppose that
x belongs to X. Let X be equipped with the topology Od corresponding to d of Task
E3.4.9. Prove that if A is closed in X with respect to Od, then d(x,A) > 0 for every x
which does not belong to A. You may wish to proceed as follows.

(1) Since A is closed in X with respect to Od, we have, by Proposition 9.1.1, that x is
not a limit point of A in X with respect to OX . By Task E9.4.1, deduce that there
is an ε ∈ R with ε > 0 such that d(x, a) ≥ ε for all a which belong to A.
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(2) Deduce that d(x,A) ≥ ε, and thus that d(x,A) > 0.
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10.1. Connectedness in finite examples

Example 10.1.1. Let X = {a, b} be a set with two elements. Let OX be the topology
on X given by

{∅, {b}, X} .

The only way to express X as a disjoint union of subsets which are not empty is:

X = {a} t {b}.

However, {a} does not belong to OX . We conclude that (X,OX) is connected.

Example 10.1.2. Let X = {a, b, c, d, e} be a set with five elements. Let OX be the
topology on X given by

{∅, {a}, {a, b}, {c, d}, {a, c, d}, {c, d, e}, {a, b, c, d}, {a, c, d, e}, X} .

The following hold.

(1) We have that X = {a, b} t {c, d, e}.

(2) Both {a, b} and {c, d, e} belong to OX .

We conclude that (X,OX) is not connected.

10.2. (Q,OQ) is not connected

Example 10.2.1. Let Q denote the rational numbers. Let OQ denote the subspace
topology on Q with respect to (R,OR). Let x ∈ R be irrational. For instance, we can
take x to be

√
2. The following hold.

(1) Since x is irrational, we have that

Q = (Q ∩ ]−∞, x[) t (Q ∩ ]x,∞[) .

x

[

[
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(2) By Example 1.6.3, we have that ]−∞, x[ belongs to OR. By definition of OQ, we
deduce that Q ∩ ]−∞, x[ belongs to OQ.

(3) By Example 1.6.3, we have that ]x,∞[ belongs to OR. By definition of OQ, we
thus have that Q ∩ ]x,∞[ belongs to OQ.

We conclude that (Q,OQ) is not connected.

10.3. A characterisation of connectedness

Proposition 10.3.1. Let (X,OX) be a topological space. Let {0, 1} be equipped with
the discrete topology. A topological space (X,OX) is connected if and only if there does
not exist a surjective, continuous map

X {0, 1}.

Proof. Suppose that there exists a surjective continuous map

X {0, 1}.
f

The following hold.

(1) Both {0} and {1} belong to the discrete topology on {0, 1}. Since f is continuous,
we thus have that both f−1 ({0}) and f−1 ({1}) belong to OX .

(2) Since f is surjective, neither f−1 ({0}) nor f−1 ({1}) is empty.

(3) We have that

f−1 ({0}) ∪ f−1 ({1}) = f−1 ({0, 1})
= X.

(4) We have that

f−1 ({0}) ∩ f−1 ({1}) = {x ∈ X | f(x) = 0 and f(x) = 1} .

Since f is a well-defined map, the set

{x ∈ X | f(x) = 0 and f(x) = 1}

is empty. We deduce that

f−1 ({0}) ∩ f−1 ({1})

is empty.

202



10.4. (R,OR) is connected

By (3) and (4), we have that

X = f−1 ({0}) t f−1 ({1}) .

We conclude, by (1) and (2), that (X,OX) is not connected.

Conversely, suppose that (X,OX) is not connected. Then there are subsets X0 and
X1 of X with the following properties.

(1) Neither X0 nor X1 is empty, and both belong to OX .

(2) We have that X = X0 tX1.

Let

X {0, 1}
f

be the map given by {
x 7→ 0 if x ∈ X0,

x 7→ 1 if x ∈ X1.

By (2), we have that f is well-defined. Since neither X0 nor X1 is empty, we have that
f is surjective. Moreover we have that f−1 ({0}) = X0, and that f−1 ({1}) = X1. Since
both X0 and X1 belong to OX , we deduce that f is continuous.

Remark 10.3.2. For theoretical purposes, it is often very powerful to have a charac-
terisation of a mathematical concept in terms of maps. We shall see that Proposition
10.3.1 is very useful for carrying out proofs involving connected topological spaces.

10.4. (R,OR) is connected

Proposition 10.4.1. The topological space (R,OR) is connected.

Remark 10.4.2. This is one of the most important facts in the course! It is a ‘low-level’
result, which relies fundamentally on the completeness of R. Task E10.2.1 guides you
through a proof.

To put it another way, Proposition 10.4.1 is the bridge between set theory and topology
upon which connectedness rests. After we have proven it, we shall not need again to
work in a ‘low-level’ way with (R,OR) in matters concerning connectedness. We shall
be able to argue entirely topologically.

Remark 10.4.3. Nevertheless Proposition 10.4.1 is intuitively clear. Something would
be wrong with our notion of a connected topological space if it did not hold! It is for
this very reason that Proposition 10.4.1 requires a ‘low-level’ proof. We have to think
very carefully about how our intuitive understanding that (R,OR) is connected can be
captured rigorously within the framework in which we are working.

203



10. Tuesday 4th February

10.5. Continuous surjections with a connected source

Proposition 10.5.1. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that
(X,OX) is connected. Suppose that there exists a continuous, surjective map

X Y.
f

Then (Y,OY ) is connected.

Proof. Let {0, 1} be equipped with the discrete topology. Suppose that

Y {0, 1}
g

is a continuous, surjective map. Since f is continuous, we have by Proposition 5.3.1
that

X {0, 1}
g ◦ f

is continuous. Since f is surjective, we moreover have that g ◦ f is surjective. By
Proposition 10.3.1, this contradicts our hypothesis that (X,OX) is connected.

We deduce there does not exist a continuous, surjective map

Y {0, 1}.
g

By Proposition 10.3.1, we conclude that (Y,OY ) is connected.

Corollary 10.5.2. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a homeomorphism. Suppose that (X,OX) is connected. Then (Y,OY ) is connected.

Proof. Since f is a homeomorphism, f is in particular a continuous bijection. By Task
E7.2.1, a bijection in the sense of Definition 7.1.1 is in particular surjective. By Propo-
sition 10.5.1, we deduce that (Y,OY ) is connected.

Corollary 10.5.3. Let (X,OX) be a connected topological space. Let ∼ be an equiva-
lence relation on X. Then (X/∼,OX/∼) is connected.

Proof. Let

X X/∼π

denote the quotient map with respect to ∼. By Remark 6.1.9, we have that π is contin-
uous. Moreover π is surjective. By Proposition 10.5.1, we deduce that (X/∼,OX/∼) is
connected.
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10.6. Geometric examples of connected topological spaces

Example 10.6.1. Let ]a, b[ be an open interval. Let O]a,b[ denote the subspace topology
on ]a, b[ with respect to (R,OR).

a b

] [

By Example 7.3.10, we have that (]a, b[ ,O]a,b[) is homeomorphic to (R,OR). By Corollary
10.5.2, we deduce that (]a, b[ ,O]a,b[) is connected.

Example 10.6.2. Let [a, b] be a closed interval, where a < b. Let O[a,b] denote the
subspace topology on [a, b] with respect to (R,OR).

a b

[ ]

We have that cl(R,OR) (]a, b[) is [a, b]. By Example 10.6.1 and Corollary E10.3.4, we
deduce that ([a, b] ,O[a,b]) is connected.

Remark 10.6.3. We can go beyond Example 10.6.1 and Example 10.6.2. Let X be a
subset of R, and let OX be equipped with the subspace topology with respect to (R,OR).
Then (X,OX) is connected if and only if X is an interval. To prove this is the topic of
Task E10.3.5.

Example 10.6.4. As in Example 6.3.1, let ∼ be the equivalence relation on I generated
by 0 ∼ 1.

0 1

By Example 10.6.2, we have that (I,OI) is connected. By Corollary 10.5.3, we deduce
that (I/∼,OI/∼) is connected.

[0] = [1]
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By Task E7.3.10, there is a homeomorphism

I/∼ S1.

By Corollary 10.5.2, we deduce that (S1,OS1) is connected.

10.7. Products of connected topological spaces

Proposition 10.7.1. Let (X,OX) and (Y,OY ) be connected topological spaces. Then
(X × Y,OX×Y ) is connected.

Proof. Let {0, 1} be equipped with the discrete topology. Let

X × Y {0, 1}
f

be a continuous map. Our argument has two principal steps.

(1) Suppose that x belongs to X. By Task E5.1.5, we have that the map

Y X
cx

given by y 7→ x0 for all y which belong to Y is continuous. By Task E5.1.3, we also
have that the map

Y Y
id

is continuous. By Task E5.3.17, we deduce that the map

Y X × Y
cx × id

given by y 7→ (x, y) for all y which belong to Y is continuous. By Proposition 5.3.1,
we deduce that the map

Y {0, 1}
f ◦ (cx × id)

given by y 7→ f(x, y) for all y which belong to Y is continuous. Since (Y,OY ) is
connected, we deduce, by Proposition 10.3.1, that f ◦ (cx × id) is not surjective.
Since {0, 1} has only two elements, we deduce that f ◦ (cx× id) is constant. In other
words, we have that

f(x, y0) = f(x, y1)

for all y0 and y1 which belong to Y .
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(2) Suppose that y belongs to Y . Let

X Y
cy

denote the map given by x 7→ y for all x which belong to X. Arguing as in (1), we
have that the map

X {0, 1}
f ◦ (id× cy)

given by x 7→ f(x, y) for all x which belong to X is continuous. To carry out this
argument is the topic of Task E10.2.2. Since (X,OX) is connected, we deduce, by
Proposition 10.3.1, that f ◦ (id × cy) is not surjective. Since {0, 1} has only two
elements, we deduce that f ◦ (id× cy) is constant. In other words, we have that

f(x0, y) = f(x1, y)

for all x0 and x1 which belong to X.

Suppose now that x0 and x1 belong to X, and that y0 and y1 belong to Y . By (1),
taking x to be x0, we have that

f(x0, y0) = f(x0, y1).

By (2), taking y to be y1, we have that

f(x0, y1) = f(x1, y1).

We deduce that

f(x0, y0) = f(x1, y1).

Thus f is constant. In particular, f is not surjective. We have thus demonstrated that
there does not exist a continuous surjection

X × Y {0, 1}.

By Proposition 10.3.1, we conclude that (X × Y,OX×Y ) is connected.

Remark 10.7.2. Suppose that (X,OX) and (Y,OY ) are topological spaces. The con-
verse to Proposition 10.7.1 holds: if (X × Y,OX×Y ) is connected, then both (X,OX)
and (Y,OY ) are connected. To prove this is the topic of Task E10.3.8.
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10.8. Further geometric examples of connected topological
spaces

Example 10.8.1. By Proposition 10.4.1, we have that (R,OR) is connected. Applying
Proposition 10.7.1 repeatedly, we deduce that (Rn,ORn) is connected, for any n ∈ N.

Example 10.8.2. By Example 10.6.2, we have that (I,OI) is connected.

0 1

[ ]

By Proposition 10.7.1, we deduce that (I2,OI2) is connected.

Example 10.8.3. By Example 10.8.2, we have that (I2,OI2) is connected. By Corollary
10.5.3, we deduce that (T 2,OT 2) is connected.

Remark 10.8.4. By a similar argument, (M2,OM2) and (K2,OK2) are connected. To
check that you understand how we have built up to being able to prove this is the topic
of Task E10.1.3.

Example 10.8.5. By Example 10.8.2, we have that (I2,OI2) is connected. By Task
E7.2.9, there is a homeomorphism

I2 D2.

By Corollary 10.5.2, we deduce that (D2,OD2) is connected.
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Example 10.8.6. By Example 10.8.5, we have that (D2,OD2) is connected. By Corol-
lary 10.5.3, we deduce that (S2,OS2) is connected.
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E10.1. Exam questions

Task E10.1.1. Let X = {a, b, c, d} be a set with four elements.

(1) Let OX be the topology on X given by

{∅, {c}, {b, c}, {c, d}, {a, b, c}, {b, c, d}, X} .

Is (X,OX) connected?

(2) Let OX be the topology on X given by

{∅, {c}, {a, b}, {a, b, c}, {a, b, d}, X} .

Is (X,OX) connected?

(3) Find an equivalence relation ∼ on X with the property that (X/∼,OX/∼) is con-
nected, where OX/∼ is the quotient topology on X/∼ with respect to the topology
OX on X of (2).

Task E10.1.2. Let R \ Q be equipped with the subspace topology OR\Q with respect
to (R,OR). Prove that (R \Q,OR\Q) is not connected.

Task E10.1.3. Prove that (K2,OK2) is connected. You may appeal without proof to
any results from the lecture, but may not assert without justification that any topological
space except (I,OI) is connected.

Task E10.1.4. Prove that the following topological spaces are connected. Where pos-
sible, give both a proof which makes use of Task E10.3.9, and a proof which does not.
You may appeal to any results from the lectures or tasks. In addition, if you may assert
the existence of homeomorphisms without proofs or explicit definitions.
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(1) The subset X of R2 depicted below, equipped with its subspace topology OX with
respect to (R2,OR2).

(2) The subset X of R2 depicted below, equipped with its subspace topology OX with
respect to (R2,OR2).

(3) The subset X of R2 depicted below, equipped with its subspace topology OX with
respect to (R2,OR2).

(4) The subset of R2 depicted below, consisting of two circles joined at a point,
equipped with its subspace topology OX with respect to (R2,OR2).
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Task E10.1.5. Let X be a disjoint union of two circles of radius 1 in R2, centred at
(0, 0) and (3, 0). Let OX denote the subspace topology on X with respect to (R2,OR2).

Let ∼ be the equivalence relation on X generated by (1, 0) ∼ (2, 0).

Without appealing to the fact that (X/∼,OX/∼) is homeomorphic to the topological
space of Task E10.1.4 (5), prove that (X/∼,OX/∼) is connected.

Task E10.1.6. Let A be the subset of R2 of Task E8.1.7.

(1, 0)

(1, 1)

( 1
2 , 0)

( 1
2 , 1)

( 1
4 , 0)

( 1
4 , 1)

( 1
8 , 0)

( 1
8 , 1)
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Let X be the closure of A in R2 with respect to OR2 , which, as you were asked to prove
in Task E8.1.7, is the union of X and the line {0} × [0, 1].

(1, 0)

(1, 1)

( 1
2 , 0)

( 1
2 , 1)

( 1
4 , 0)

( 1
4 , 1)

( 1
8 , 0)

( 1
8 , 1)(0, 1)

(0, 0)

Let OX be the subspace topology on X with respect to (R2,OR2). Prove that (X,OX)
is connected. You may wish to proceed as follows.

(1) Let OA be the subspace topology on A with respect to (X,OX). Prove that
(A,OA) is connected by appealing to Task E2.3.1, Task E7.1.8, Example 10.6.2,
Corollary 10.5.2, and Task E10.3.9.

(2) Deduce that (X,OX) is connected by Task E10.3.4.

Task E10.1.7. Let R be equipped with its standard topology OR. Let OQ be the
subspace topology on Q with respect to (R,OR). Can there be a continuous map

R Q

which is a surjection?

E10.2. In the lecture notes

Task E10.2.1. Prove that (R,OR) is connected, by filling in the details of the following
argument. Let U be a subset of R which belongs to OR. By Task E2.3.7, there is a set I
and an open interval Ui for each i ∈ I such that U =

⊔
i∈I Ui. Suppose that U is neither

∅ nor R. Then there is an i ∈ I such that one of the following holds.

(1) We have that Ui is ]a,∞[, where a ∈ R.

(2) We have that Ui is ]−∞, b[, where b ∈ R,.

(3) We have that Ui is ]a, b[, where a ∈ R and b ∈ R.

Treat each of the cases separately, as follows.

(1) Then a is a limit point of U in R with respect to OR, and a does not belong to U .

(2) Then b is a limit point of U in R with respect to OR, and b does not belong to U .
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(3) Then both a and b are limit points of U in R with respect to OR, and neither a
nor b belongs to U .

By Proposition 9.1.1, deduce in each case that U is not closed with respect to OR. By
Task E10.3.1, conclude that (R,OR) is connected.

Task E10.2.2. Carry out the argument needed for (2) of the proof of Proposition 10.7.1.

E10.3. For a deeper understanding

Task E10.3.1. Let (X,OX) be a topological space. Prove that (X,OX) is connected if
and only if the only subsets of X which both belong to OX and are closed with respect
to OX are ∅ and X. You may wish to proceed as follows.

(1) Suppose that (X,OX) is connected. Let X0 be a subset of X which belongs to OX .
If X0 is closed with respect to OX , we have that X \X0 belongs to OX . Moreover
X0 ∩ (X \X0) is empty. Since (X,OX) is connected, conclude that X0 is either ∅
or X.

(2) Suppose that X0 is a subset of X which is neither ∅ nor X. Observe that X \X0

is then neither ∅ nor X. We have that X = X0 t (X \X0). If both X0 and X \X0

belong to OX , deduce that (X,OX) is not connected. Conclude that if X0 both
belongs to OX and is closed with respect to OX , then (X,OX) is not connected.

Task E10.3.2. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that (X,OX)
is connected. Let

X Y
f

be a continuous map. Let Of(X) denote the subspace topology on f(X) with respect to
(Y,OY ). Prove that

(
f(X),Of(X)

)
is connected. You may wish to proceed as follows.

(1) Let

X f(X)
g

be the map given by x 7→ f(x). By Task E5.1.9, observe that g is continuous.

(2) Moreover we have that g is surjective. By Proposition 10.5.1, conclude that(
f(X),Of(X)

)
is connected.

Task E10.3.3. Let (X,OX) be a topological space. Let A be a subset of X, and let
OA denote the subspace topology on A with respect to (X,OX). Suppose that (A,OA)
is connected. Let B be a subset of cl(X,OX) (A) with the property that A is a subset of
B. Let OB denote the subspace topology on B with respect to (X,OX). Prove that
(B,OB) is connected. You may wish to proceed as follows.
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(1) Let {0, 1} be equipped with the discrete topology Odiscrete. Suppose that

B {0, 1}
f

is continuous. Let

A B
i

denote the inclusion map. By Proposition 5.2.2, we have that i is continuous. By
Proposition 5.3.1, deduce that

A {0, 1}
f ◦ i

is continuous.

(2) Since (A,OA) is connected, deduce by Proposition 10.3.1 that f◦i is not surjective.
Since {0, 1} has only two elements, deduce that f ◦ i is constant.

(3) By Task E8.3.13, we have that cl(B,OB) (A) is B∩cl(X,OX) (A). Since B is a subset
of cl(X,OX) (A) by assumption, deduce that cl(B,OB) (A) is B.

(4) By Task E9.3.9, we have that f
(
cl(B,OB) (A)

)
is a subset of

cl({0,1},Odiscrete) (f(A)) .

By (3), deduce that f(B) is a subset of

cl({0,1},Odiscrete) (f(A)) .

(5) Demonstrate that cl({0,1},Odiscrete) (f(A)) is f(A). By (4), deduce that f(B) is a
subset of f(A).

(6) By (2) and (5), we have that f is constant. In particular, we have that f is not
surjective. By Proposition 10.3.1, conclude that (B,OB) is connected.

Corollary E10.3.4. Let (X,OX) be a topological space. Let A be a subset of X, and let
OA denote the subspace topology on A with respect to (X,OX). Suppose that (A,OA)
is connected. Let Ocl(X,OX )(A) denote the subspace topology on cl(X,OX) (A) with respect

to (R,OR). Then
(

cl(X,OX) (A) ,Ocl(X,OX )(A)

)
is connected.

Proof. Follows immediately from Task E10.3.3, taking B to be cl(X,OX) (A).

Task E10.3.5. Let X be a subset of R. Let OX denote the subspace topology on X
with respect to (R,OR). Prove that (X,OX) is connected if and only if X is an interval.
You may wish to proceed as follows.
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(1) Suppose that X is an interval. The difference possibilities for X are listed below,
where a and b belong to R, and a < b. In each case, fill in the details of the outlined
proof that (X,OX) is connected.

Interval X Proof that (X,OX) is connected

R Proposition 10.4.1
]a, b[ Example 10.6.1
[a, b] Example 10.6.2
[a, b[ Example 10.6.1 and Task E10.3.3
]a, b] Example 10.6.1 and Task E10.3.3
∅ By inspection.
[a, a] By inspection.
]a,∞[ Task E7.1.5, Corollary 10.5.2, and Proposition 10.4.1.
]−∞, b[ Task E7.1.6, Corollary 10.5.2, and Proposition 10.4.1.
[a,∞[ Corollary E10.3.4 and the case that X is ]a,∞[.
]−∞, b] Corollary E10.3.4 and the case that X is ]−∞, b[.

(2) Suppose that X is not an interval. By Task E1.3.3, there is an x0 ∈ X, an x1 ∈ X,
and a y ∈ R\X, such that x0 < y < x1. Let X0 be X∩ ]−∞, y[, and let X1 be X∩ ]y,∞[.
Observe that both X0 and X1 belong to OX , and that X = X0 t X1. Conclude that
(X,OX) is not connected.

Task E10.3.6. Let (X,OX) be a connected topological space. Let R be equipped with
the standard topology OR. Let

X R
f

be a continuous map. Suppose that x0 and x1 belong to X, and that f(x0) ≤ f(x1).
Prove that, for every x ∈ R such that f(x0) ≤ y ≤ f(x1), there is an x2 ∈ X such that
f(x2) = y. You may wish to proceed as follows.

(1) Let Of(X) denote the subspace topology on f(X) with respect to (R,OR). Since
(X,OX) is connected, deduce by Task E10.3.2 that

(
f(X),Of(X)

)
is connected.

(2) By Task E10.3.5, deduce that f(X) is an interval.

(3) Appeal to Task E1.3.3.

Remark E10.3.7. Taking (X,OX) to be (R,OR), or to be an interval equipped with
the subspace topology with respect to (R,OR), the conclusion of Task E10.3.6 is exactly
the intermediate value theorem. As you may recall from earlier courses, this is one of
the handful of crucial facts upon which analysis rests.

Task E10.3.8. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that (X ×
Y,OX×Y ) is connected. Prove that both (X,OX) and (Y,OY ) are connected. You may
wish to appeal to Proposition 5.4.3 and Proposition 10.5.1.
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Task E10.3.9. Let (X,OX) be a topological space. Let {Aj}j∈J be a set of subsets of
X such that the following hold.

(1) For every j ∈ J , we have that (Aj ,OAj ) is connected, where OAj denotes the
subspace topology on Aj with respect to (X,OX).

(2) We have that
⋃
j∈J Aj is X.

(3) We have that
⋂
j∈J Aj is not empty.

Prove that (X,OX) is connected. You may wish to proceed as follows.

(1) Let {0, 1} be equipped with the discrete topology. Let

X {0, 1}
f

be a continuous map. Suppose that j belongs to J . Let

Aj X
ij

denote the inclusion map, given by a 7→ a. By Proposition 5.2.2, we have that ij is
continuous. By Proposition 5.3.1, deduce that the map

Aj {0, 1}
f ◦ ij

given by a 7→ f(a) is continuous.

(2) Since (Aj ,OAj ) is connected, deduce by Proposition 10.3.1 that f ◦ ij is constant.

(3) Observe that the fact that
⋃
j∈J Aj is X, that

⋂
j∈J Aj is not empty, and that

f ◦ ij is constant for every j ∈ J , implies that f is constant.

(4) In particular, f is not surjective. Thus we have demonstrated that there does not
exist a continuous surjection

X {0, 1}.

By Proposition 10.3.1, conclude that (X,OX) is connected.
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11.1. Using connectedness to prove that two topological
spaces are not homeomorphic

Remark 11.1.1. To prove that a given topological space (X,OX) is not homeomorphic
to a particular topological space (Y,OY ) is typically hard. In geometric examples, when
X and Y are infinite, there are many infinitely many maps from X to Y . Thus we
cannot simply list them all, and then check whether or not there is a homeomorphism
amongst them.

We must proceed in a more sophisticated way. The theory of connectedness which we
have developed furnishes us with our first powerful tool for proving that two topological
spaces are not homeomorphic.

Example 11.1.2. Let X = [1, 2] ∪ ]4, 7].

1 2

[ ]

4 7

] ]

Let OX denote the subspace topology on X with respect to (R,OR). Arguing as in
Example 9.6.2, we have that (X,OX) is not connected.

Let O]1,5[ be the subspace topology on [1, 5] with respect to (R,OR).

1 5

[ ]

By Task E10.3.5, we have that
(
[1, 5] ,O]1,5]

)
is connected. Suppose that

[1, 5] X
f

is a homeomorphism. By Corollary 10.5.2, we then have that (X,OX) is connected.
Thus we have a contradiction. We conclude that there does not exist a homeomor-

phism

[1, 5] X.
f

In other words, we have that (X,OX) is not homeomorphic to
(
[1, 5] ,O]1,5]

)
.
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Remark 11.1.3. We can ‘snap off’ the half open interval ]2, 5] from [1, 5].

1 2 5

[ ]

] ]

We can then ‘move’ this half open interval to ]4, 7].

1 2

[ ]

4 7

] ]

This defines a bijection

[1, 5] X.
f

However, this bijection is not continuous. To ‘snap off’ is not allowed in topology! The
details of this are the topic of Task E11.2.1.

It is very important to appreciate that to distinguish between (X,OX) and(
[1, 5] ,O]1,5]

)
,

we must give a topological argument. From the point of view of set theory, [1, 5] and X
are ‘the same’.

Remark 11.1.4. Let X = [1, 2] ∪ [4, 7].

1 2

[ ]

4 7

[ ]

Let OX denote the subspace topology on X with respect to (R,OR). Exactly the same
kind of argument as in Example 11.1.2 proves that (X,OX) is not homeomorphic to(
[1, 5] ,O]1,5]

)
.

1 5

[ ]

There is a bijection between [1, 5] and X, though it is harder to find than the bijection of
Remark 11.1.3. This is the topic of Task E11.4.2. Once more, we see that it is necessary
to give a topological argument to distinguish between (X,OX) and

(
[1, 5] ,O]1,5]

)
.
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11.2. Using connectedness to distinguish between topological
spaces by removing points

Example 11.2.1. Suppose that a and b belong to R, and that a < b. Let O[a,b] be the
subspace topology on [a, b] with respect to (R,OR).

a b

[ ]

We have that [a, b] \ {a} is ]a, b].

a b

] ]

Let O]a,b] be the subspace topology on ]a, b] with respect to
(
[a, b] ,O[a,b]

)
. By Task

E2.3.1 and Task E10.3.5, we have that
(
]a, b] ,O]a,b]

)
is connected.

Let O]a,b[ be the subspace topology on ]a, b[ with respect to (R,OR).

a b

] [

Suppose that

[a, b] ]a, b[
f

is a homeomorphism. Let O]a,b[\{f(a)} be the subspace topology on ]a, b[ \ {f(a)} with
respect to

(
]a, b[ ,O]a,b[

)
. We have that ]a, b[\{f(a)} is the union of ]a, f(a)[ and ]f(a), b[.

This union is disjoint.

a f(a) b

] [

] [

Moreover, both ]a, f(a)[ and ]f(a), b[ belong to O]a,b[\{f(a)}. Thus(
]a, b[ \ {f(a)} ,O]a,b[\{f(a)}

)
is not connected. To generalise this argument is the topic of Task E11.2.5.
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By Task E7.1.20, since f is a homeomorphism, the map

]a, b] ]a, b[ \ {f(a)}

given by x 7→ f(x) is a homeomorphism. Since (]a, b] ,O]a,b]) is connected, we deduce,
by Corollary 10.5.2, that (

]a, b[ \ {f(a)} ,O]a,b[\{f(a)}
)

is connected.
Thus we have a contradiction. We conclude that there does not exist a homeomor-

phism

[a, b] ]a, b[ .
f

In other words,
(
[a, b] ,O[a,b]

)
is not homeomorphic to

(
]a, b[ ,O]a,b[

)
.

Remark 11.2.2. Suppose that a0 < a1 < b0 < b1 belong to R. Let X be the union of
]a0, a1[ and ]b0, b1[. Let OX denote the subspace topology on X with respect to (R,OR).

a0 a1 b0 b1

] [ ] [

Let (
]a, b[ \ {f(a)} ,O]a,b[\{f(a)}

)
be as in Example 11.2.1. By Task E11.2.3, we have that(

]a, b[ \ {f(a)} ,O]a,b[\{f(a)}
)

is homeomorphic to (X,OX). Thus we can picture
(
]a, b[ \ {f(a)} ,O]a,b[\{f(a)}

)
as fol-

lows.

] [ ] [

Example 11.2.3. Suppose that a and b belong to R, and that a < b. Let O[a,b] be the
subspace topology on [a, b] with respect to (R,OR).

a b

[ ]

We have that [a, b] \ {a, b} is ]a, b[.
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a b

] [

Let O]a,b[ be the subspace topology on ]a, b[ with respect to
(
[a, b[ ,O[a,b[

)
. By Task

E2.3.1 and Task E10.3.5, we have that
(
]a, b[ ,O]a,b[

)
is connected. Let O[a,b[ be the

subspace topology on [a, b[ with respect to (R,OR).

a b

[ [

Let

[a, b] [a, b[
f

be a homeomorphism. LetO[a,b[\{f(a),f(b)} be the subspace topology on [a, b[\{f(a), f(b)}
with respect to

(
[a, b[ ,O[a,b[

)
. One of the following two possibilities must hold.

(I) One of f(a) or f(b) is a.

(II) Neither f(a) nor f(b) is a.

Suppose that (I) holds. Since f is bijective, one of f(a) or f(b) is not a. Let us denote
whichever of f(a) or f(b) is not a by x. Then [a, b[ \ {f(a), f(b)} is ]a, b[ \ {x}. As in
Example 11.2.1, we deduce that(

[a, b[ \ {f(a), f(b)} ,O[a,b[\{f(a),f(b)}
)

is not connected.

a x b

] [

] [

Suppose now that (II) holds. Since f is bijective, either f(a) < f(b) or f(a) > f(b).
Suppose that f(a) < f(b). We have that [a, b[ \ {f(a), f(b)} is the union of [a, f(a)[ and
]f(a), b[ \ {f(b)}, and this union is disjoint.
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a f(a) f(b) b

[ [

] [

] [

]f(a), b[ \ {f(b)}

Moreover, both [a, f(a)[ and ]f(a), b[ \ {f(b)} belong to O[a,b[\{f(a),f(b)}. Thus(
[a, b[ \ {f(a), f(b)} ,O[a,b[\{f(a),f(b)}

)
is not connected. A similar argument establishes that(

[a, b[ \ {f(a), f(b)} ,O[a,b[\{f(a),f(b)}
)

is not connected if f(a) > f(b). This is the topic of Task E11.2.2.
By Task E7.1.20, since f is a homeomorphism, the map

]a, b[ [a, b[ \ {f(a), f(b)}

given by x 7→ f(x) is a homeomorphism. Since (]a, b[ ,O]a,b[) is connected, we deduce,
by Corollary 10.5.2, that (

[a, b[ \ {f(a), f(b)} ,O[a,b[\{f(a),f(b)}
)

is connected.
Thus we have a contradiction. We conclude that there does not exist a homeomor-

phism

[a, b] [a, b[ .
f

In other words,
(
[a, b] ,O[a,b]

)
is not homeomorphic to

(
[a, b[ ,O[a,b[

)
.

Remark 11.2.4. Suppose that a0 < a1 < b0 < b1 < c0 < c1 belong to R. Let X be the
union of ]a0, a1[, ]b0, b1[, and ]c0, c1[. Let OX denote the subspace topology on X with
respect to (R,OR).

a0 a1 b0 b1 c0 c1

[ [ ] [ ] [

Let (
[a, b[ \ {f(a), f(b)} ,O[a,b[\{f(a),f(b)}

)

224



11.2. Using connectedness to distinguish between topological spaces by removing points

be as in case (II) of Example 11.2.3. By Task E11.2.4, we have that(
[a, b[ \ {f(a), f(b)} ,O[a,b[\{f(a),f(b)}

)
is homeomorphic to (X,OX). Thus we can picture(

[a, b[ \ {f(a), f(b)} ,O[a,b[\{f(a),f(b)}
)

as follows.

[ [ ] [ ] [

Example 11.2.5. Let (I,OI) be the unit interval. Suppose that 0 < t < 1.

t

LetOI\{t} be the subspace topology on I\{t} with respect to (I,OI). Then
(
I \ {t},OI\{t}

)
is not connected.

Suppose that

I S1
f

is a homeomorphism.

f(t)

Let OS1\{f(t)} be the subspace topology on S1 \ {f(t)} with respect to (S1,OS1). We

have that
(
S1 \ {f(t)} ,OS1\{f(t)}

)
is connected.
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Since f is a homeomorphism, we have by Task E7.1.20 that there is a homeomorphism

I \ {t} S1 \ {f(t)} .

By Task E7.3.2, we deduce that there is a homeomorphism

S1 \ {f(t)} I \ {t}.

By Corollary 10.5.2, since (
S1 \ {f(t)} ,OS1\{f(t)}

)
is connected, we deduce that (

I \ {t},OI\{t}
)

is connected. Thus we have a contradiction. We conclude that there does not exist a
homeomorphism

I S1.

In other words, (I,OI) is not homeomorphic to
(
S1,OS1

)
.

Remark 11.2.6. To prove the assertion that
(
I \ {t},OI\{t}

)
is not connected, and the

assertion that
(
S1 \ {f(t)} ,OS1\{f(t)}

)
is connected, is the topic of Task E11.2.11.

Remark 11.2.7. There exists a bijection between I and S1. This is the topic of Task
E11.4.3. Hence I and S1 are ‘the same’ from the point of view of set theory. Thus, just
as in Remark 11.1.3, a topological argument, such as that of Example 11.2.5, must be
given to prove that (I,OI) is not homeomorphic to (S1,OS1).

Example 11.2.8. Suppose that n > 1 belongs to N. Let R be equipped with the
standard topology OR. Let Rn be equipped with the product topology ORn of Notation
E3.3.8. Suppose that x belongs to Rn. Suppose that

Rn R
f

is a homeomorphism. Let OR\{f(x)} be the subspace topology on R\{f(x)} with respect
to (R,OR).

f(x)

By Task E11.2.5, we have that (R \ {f(x)} ,OR\{f(x)}) is not connected.
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Let ORn\{x} be the subspace topology on Rn \ {x} with respect to (Rn,ORn). By Task
E11.3.1, we have that (Rn \ {x},ORn\{x}) is connected. Since f is a homeomorphism,
we have by Task E7.1.20 that there is a homeomorphism

Rn \ {x} R \ {f(x)} .

By Corollary 10.5.2, we deduce that(
R \ {f(x)} ,OR\{f(x)}

)
is connected. Thus we have a contradiction. We conclude that there does not exist a
homeomorphism

Rn R.

In other words, (R,OR) is not homeomorphic to (Rn,ORn).

Remark 11.2.9. Example 11.2.8 is intuitively evident. We cannot bend or squash
ourselves in such a way that we become a line! However, there is a bijection between R
and Rn, for any n ≥ 1! This is the topic of Task E11.4.4.

Moreover, to prove that Rm is not homeomorphic to Rn when m 6= n, m ≥ 2, and
n ≥ 2, is much harder. One needs more powerful techniques.

11.3. Connected components

Terminology 11.3.1. Let (X,OX) be a topological space. Let A be a subset of X, and
let OA be the subspace topology on A with respect to (X,OX). Then A is a connected
subset of X with respect to OX if (A,OA) is a connected.

Terminology 11.3.2. Let (X,OX) be a topological space. Suppose that x belongs to
X. Let A be a connected subset of X with respect to OX such that the following hold.

(1) We have that x belongs to A.

(2) For every connected subset B of X with respect to OX to which x belongs, we
have that B is a subset of A.

We refer to A as the largest connected subset of X with respect to OX to which x
belongs.

� We do not yet know whether, for a given x which belongs to X, there is a subset
A of X which has the property that it is the largest connected subset of X with

respect to OX to which x belongs. We shall now demonstrate this.
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Remark 11.3.3. Let (X,OX) be a topological space. Suppose that x belongs to X.
Let A0 and A1 be connected subsets of X with respect to OX which both satisfy (1)
and (2) of Terminology 11.3.2. Then A0 = A1. To check that you understand this is the
topic of Task E11.2.6.

Definition 11.3.4. Let (X,OX) be a topological space. Suppose that x belongs to X.
The connected component of x in (X,OX) is the union of all connected subsets of X
with respect to OX to which x belongs.

Notation 11.3.5. Let (X,OX) be a topological space. Suppose that x belongs to X.
We denote the connected component of x in (X,OX) by Γx(X,OX).

Remark 11.3.6. Let (X,OX) be a topological space. Suppose that x belongs to X.
Then {x} is a connected subset of X with respect to OX . This is the topic of Task
E11.2.7. Thus x belongs to Γx(X,OX).

Proposition 11.3.7. Let (X,OX) be a topological space. Suppose that x belongs to
X. Then Γx(X,OX) is a connected subset of X.

Proof. Let {Ai}i∈I be the set of connected subsets of X with respect to OX to which
x belongs. We have that {x} is a subset of

⋂
i∈I Ai. By Task E10.3.9, we deduce that

Γx(X,OX) =
⋃
i∈I Ai is a connected subset of X with respect to OX .

Remark 11.3.8. Let (X,OX) be a topological space. Suppose that x belongs to X. Let
A be a connected subset of X with respect to OX to which x belongs. By definition of
Γx(X,OX), we have that A is a subset of Γx(X,OX). By Proposition 11.3.7, we conclude that
Γx(X,OX) is the largest connected subset of X with respect to OX to which x belongs.

11.4. Examples of connected components

Example 11.4.1. Let (X,OX) be a connected topological space. For example, we can
take (X,OX) to be (D2,OD2).

Suppose that x belongs to X.

x
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We have that X is a connected subset of X with respect to OX , for which (1) and (2)
of Terminology 11.3.2 hold. By Remark 11.3.3 and Remark 11.3.8, we conclude that
Γx(X,OX) = X.

Example 11.4.2. Let X be a set. Let OX be the discrete topology on X. Suppose that
x belongs to X. Let A be a subset of X to which x belongs. Let OA be the subspace
topology on A with respect to (X,OX). Then OA is the discrete topology on A. To
verify this is Task E11.2.8.

Suppose that A has more than one element, so that A \ {x} is not empty. We have
that

A = {x} t (A \ {x}) .

Since OA is the discrete topology on A, every subset of A belongs to OA. In particular,
both {x} and A \ {x} belong to OA, Thus (A,OA) is not connected. In other words, A
is not a connected subset of X with respect to OX .

We conclude that Γx(X,OX) = {x}.

Example 11.4.3. Let X = {a, b, c, d} be a set with four elements. Let OX be the
topology on X given by

{∅, {a}, {b}, {d}, {a, b}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, X} .

Table 11.1 lists the connected subsets of X with respect to OX . By inspecting Table 11.1,
and by Remark 11.3.3 and Remark 11.3.8, we conclude that the connected components
in (X,OX) of the elements of X are as follows.

Element Connected component

a {a}
b {b, c}
c {b, c}
d {d}

Example 11.4.4. Let Q be the set of rational numbers. Let OQ be the subspace
topology on Q with respect to (R,OR). Suppose that q belongs to Q. Let A be a subset
of Q to which q belongs. Let OA be the subspace topology on A with respect to (Q,OQ).
By Task E2.3.1, we have that OQ is the subspace topology on A with respect to OR.

Suppose that r belongs to A, and that r is not equal to q. There is an irrational
number x with q < x < r.

q x r

The following hold.
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(1) Since x is irrational, and thus does not belong to A, we have that

A = (A ∩ ]−∞, x[) t (A ∩ ]x,∞[) .

(2) We have that q belongs to A ∩ ]−∞, x[, and that r belongs to A ∩ ]x,∞[. In
particular, neither A ∩ ]−∞, x[ nor A ∩ ]x,∞[ is empty.

(3) Since both ]−∞, x[ and ]x,∞[ belong toOR, and sinceOA is the subspace topology
on A with respect to (R,OR), we have that both A∩ ]−∞, x[ and A∩ ]x,∞[ belong
to OA.

Thus (A,OA) is not connected. In other words, A is not a connected subset of Q with
respect to OQ. We conclude that Γq(Q,OQ) is {q}.

Example 11.4.5. Let X = [1, 2] ∪ [4, 7].

1 2

[ ]

4 7

[ ]

Let OX be the subspace topology on X with respect to (R,OR). Suppose that x belongs
to [1, 2].

1 x 2

[ ]

4 7

[ ]

By Task E2.3.1 and Task E10.3.5, we have that [1, 2] is a connected subset of (X,OX).
Suppose that A is a subset of X to which x belongs, and which has the property that

A ∩ [4, 7] is not empty.

1 x 2

[ ]

4 7

[ ]

[ ] [ ]

Let OA be the subspace topology on A with respect to (X,OX). The following hold.

(1) We have that A = (A ∩ [1, 2]) t (A ∩ [4, 7]).

(2) We have that x belongs to A ∩ [1, 2]. In particular, A ∩ [1, 2] is not empty. By
assumption, we also have that A ∩ [4, 7] is not empty.

(3) As demonstrated in Example 9.6.2, both [1, 2] and [4, 7] belong to OX . Thus both
A ∩ [1, 2] and A ∩ [4, 7] belong to OA.
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Thus (A,OA) is not connected. In other words, A is not a connected subset of X with
respect to OX . By Remark 11.3.3 and Remark 11.3.8, we conclude that Γx(X,OX) is [1, 2].

A similar argument demonstrates that if x belongs to [4, 7], then Γx(X,OX) is [4, 7]. To
fill in the details is the topic of Task E11.2.9.

11.5. Number of distinct connected components as an
invariant

Remark 11.5.1. If two topological spaces are homeomorphic, then they have the same
number of distinct connected components. This is the topic of Task E11.3.18.

Therefore, to prove that two topological spaces are not homeomorphic, it suffices to
count their respective numbers of distinct connected components, and to observe that
they are different. This is a gigantic simplification! It is so much of a simplification that
it is only useful to a certain extent, as we shall see.

In particular, it is most definitely not the case that two topological spaces are home-
omorphic if and only if they have the same number of distinct connected components.
There are many connected topological spaces which are not homeomorphic!

Nevertheless, the idea that we can associate to complicated gadgets, such as topolog-
ical spaces, simpler invariants, which we can calculate with more easily, is of colossal
importance in mathematics. These invariants might be: numbers; algebraic gadgets such
as groups, vector spaces, or rings; or other structures.

Thus the number of distinct connected components of a topological space is the be-
ginning of a fascinating story!

Example 11.5.2. Let T be the subset of R2 given by the union of

{(0, y) | −1 ≤ y ≤ 1}

and

{(x, 1) | −1 ≤ x ≤ 1} .

Let OT be the subspace topology on T with respect to (R2,OR2).

Let I be the subset of R2 given by

{(0, y) | 0 ≤ y ≤ 1} .

Let OI be the subspace topology on I with respect to (R2,OR2).
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Suppose that

T I
f

is a homeomorphism. Let x be the point (0, 1) of T.

Let OT\{x} be the subspace topology on T \ {x} with respect to (T,OT). Then(
T \ {x},OT\{x}

)
has three distinct connected components.

Let OI\{f(x)} be the subspace topology on I\{f(x)} with respect to (I,OI). Suppose that
f(x) is (0, 0) or (0, 1).

Then
(
I \ {f(x)} ,OI\{f(x)}

)
is connected. Suppose that f(x) is not (0, 0) or (0, 1).
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Then
(
I \ {f(x)} ,OI\{f(x)}

)
has two distinct connected components.

Since f is a homeomorphism, we have by Task E7.1.20 that there is a homeomorphism

T \ {x} I \ {f(x)} .

By Corollary E11.3.19, since (
T \ {x},OT\{x}

)
has three distinct connected components, we deduce that(

I \ {f(x)} ,OI\{f(x)}
)

has three distinct connected components. Thus we have a contradiction. We conclude
that there does not exist a homeomorphism

T I.

In other words, (T,OT) is not homeomorphic to (I,OI).

Remark 11.5.3. To fill in the details of the three calculations of numbers of distinct
connected components in Example 11.5.2 is the topic of Task E12.2.1.
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Subset A Connected? Reason

∅ 3

{a} 3

{b} 3

{c} 3

{d} 3

{a, b} 7 A = {a} t {b}, and both {a} = A ∩ {a} and
{b} = A ∩ {b} belong to OA.

{a, c} 7 A = {a} t {c}, and both {a} = A ∩ {a} and
{c} = A ∩ {b, c, d} belong to OA.

{a, d} 7 A = {a} t {d}, and both {a} = A ∩ {a} and
{d} = A ∩ {d} belong to OA.

{b, c} 3

{b, d} 7 A = {b} t {d}, and both {b} = A ∩ {b} and
{d} = A ∩ {d} belong to OA.

{c, d} 7 A = {c} t {d}, and both {c} = A ∩ {b, c} and
{d} = A ∩ {b, d} belong to OA.

{a, b, c} 7 A = {a} t {b, c}, and both {a} = A∩ {a} and
{b, c} = A ∩ {b, c} belong to OA.

{a, b, d} 7 A = {a} ∪ {b, d}, and both {a} = A∩ {a} and
{b, d} = A ∩ {b, d} belong to OA.

{a, c, d} 7 A = {a} ∪ {c, d}, and both {a} = A∩ {a} and
{c, d} = A ∩ {b, c, d} belong to OA.

{b, c, d} 7 A = {b, c} ∪ {d}, and both {b, c} = A ∩ {b, c}
and {d} = A ∩ {d} belong to OA.

X 7 X = {a} ∪ {b, c, d}, and both {a} and {b, c, d}
belong to OX .

Table 11.1.: Connected subsets of the topological space (X,OX) of Example 11.4.3. For
each subset A of X, we denote the subspace topology on A with respect to
(X,OX) by OA.
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E11. Exercises for Lecture 11

E11.1. Exam questions

Task E11.1.1. Let A be the subset of I2 given by the union of
[
0, 1

4

]
×
[

1
4 ,

3
4

]
and[

3
4 , 1
]
×
[

1
4 ,

3
4

]
.

Let

I2 T 2
π

be the quotient map. LetOA be the subspace topology on π(A) with respect to (T 2,OT 2).
Let X be the subset of R2 given by the union of D2 and{

(x, y) ∈ R2 | ‖(x− 3, y)‖ ≤ 1
}
.

Let OX be the subspace topology on X with respect to (R2,OR2). Is
(
π(A),Oπ(A)

)
homeomorphic to (X,OX)?

Task E11.1.2. Suppose that a and b belong to R, and that a < b. Let O[a,b[ be the
subspace topology on [a, b[ with respect to (R,OR).

a b

[ [

Let O]a,b[ be the subspace topology on ]a, b[ with respect to (R,OR).
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a b

] [

Prove that
(
[a, b[ ,O[a,b[

)
is not homeomorphic to

(
]a, b[ ,O]a,b[

)
.

Task E11.1.3. Suppose that a and b belong to R, and that a < b. Let O]a,b] be the
subspace topology on ]a, b] with respect to (R,OR).

a b

] ]

Let O]a,b[ be the subspace topology on ]a, b[ with respect to (R,OR).

a b

] [

Prove that
(
]a, b] ,O]a,b]

)
is not homeomorphic to

(
]a, b[ ,O]a,b[

)
. You may wish to proceed

by appealing to Task E11.1.2 and to Task E7.1.4.

Task E11.1.4. Suppose that a and b belong to R, and that a < b. Let O[a,b] be the
subspace topology on [a, b] with respect to (R,OR).

a b

[ ]

Let O]a,b] be the subspace topology on ]a, b] with respect to (R,OR).

a b

] ]

Prove that
(
[a, b] ,O[a,b]

)
is not homeomorphic to

(
]a, b] ,O]a,b]

)
. You may wish to proceed

by appealing to Example 11.2.3 and to Task E7.1.4.

Remark E11.1.5. Suppose that a < b belong to R. Let O[a,b], O]a,b[, O[a,b[, and ]a, b]
be the subspace topologies with respect to (R,OR) on [a, b], ]a, b[, [a, b[, and ]a, b] respec-
tively. Assembling Example 11.2.1, Example 11.2.3, Task E11.1.2, Task E11.1.3, and
Task E11.1.4, we have proven that no two of

(
[a, b] ,O[a,b]

)
,
(
]a, b[ ,O]a,b[

)
,
(
[a, b[ ,O[a,b[

)
,

and
(
]a, b] ,O]a,b]

)
are homeomorphic.
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Task E11.1.6. Let X be a figure of eight, viewed as a subset of R2. Let OX be the
subspace topology on X with respect to (R2,OR2).

Prove that (X,OX) is not homeomorphic to (S1,OS1).

Can you find an argument which does not involve removing the junction point of the
figure of eight, depicted below?

Task E11.1.7. Let (X,OX) be the figure of eight of Task E11.1.6. Prove that (X,OX)
is not homeomorphic to the unit interval (I,OI).

You may wish to appeal to Task E11.3.17.
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Task E11.1.8. Let X = {a, b, c} be a set with three elements. Let OX be the topology
on X given by

{∅, {a}, {c}, {a, b}, {a, c}, X} .

List all the subset of X, and determine whether each is a connected subset of X with
respect to OX . For each which is not, explain why not. Find the connected component
in (X,OX) of each element of X.

Task E11.1.9. Let X = {a, b, c, d, e} be a set with five elements. Let OX be the
topology on X given by

{∅, {b}, {e}, {a, b}, {b, e}, {c, d}, {a, b, e}, {b, c, d}, {c, d, e}, {a, b, c, d}, {b, c, d, e}, X} .

Find the distinct connected components of (X,OX). To save yourself a little work, you
may wish to glance at Corollary E11.3.15 before proceeding.

Task E11.1.10. Let X = ]−∞, 0[ ∪ ]1, 2[ ∪ [3, 5]. Let OX be the subspace topology on
X with respect to (R,OR).

0 1 2 3 5

[ ] [ [ ]

Prove that (X,OX) has three distinct connected components.

Task E11.1.11. Let X = I2 ∪ ([3, 4]× [0, 1]). Let OX be the subspace topology on X
with respect to (R2,OR2).

Let ∼ be the equivalence relation on X which you defined in Task E6.1.8. Prove that
(X/∼,OX/∼) has two distinct connected components.

Task E11.1.12. Let OSorg be the set of subsets U of R such that if x belongs to U ,
then there is a half open interval [a, b[ such that x belongs to [a, b[, and such that [a, b[
is a subset of U .
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x

[ [ [ [

[ [

a b

U

Check that OSorg defines a topology on R. Suppose that x belongs to R. Prove that the
connected component of x in (R,OSorg) is {x}.

Remark E11.1.13. The topological space (R,OSorg) is known as the Sorgenfrey line.
The topology OSorg is also known as the lower limit topology on R.

Task E11.1.14. Let (X,OX) be a topological space. Let A0 and A1 be connected
subsets of X with respect to OX . Is it necessarily the case that A0 ∩ A1 is a connected
subset of X? You may find it helpful to take (X,OX) to be (R2,OR2).

E11.2. In the lecture notes

Task E11.2.1. In the notation of Example 11.1.2, define a map

[0, 5] X
f

which captures the idea of ‘snapping off’ ]2, 5] and ‘moving it’ to ]4, 7]. Prove that f is
a bijection. Prove that f is not continuous.

Task E11.2.2. In the notation of Example 11.2.3, prove that if (I) holds and f(a) >
f(b), then (

[a, b[ \ {f(a), f(b)} ,O[a,b[\{f(a),f(b)}
)

is not connected.

Task E11.2.3. Suppose that a < x < b belong to R. Let O]a,b[ denote the subspace
topology on ]a, b[ with respect to (R,OR). Let O]a,b[\{x} denote the subspace topology
on ]a, b[ \ {x} with respect to

(
]a, b[ ,O]a,b[

)
.

a x b

] [

Suppose that a0 < a1 < b0 < b1 belong to R. Let X be the union of ]a0, a1[ and ]b0, b1[.
Let OX denote the subspace topology on X with respect to (R,OR).

a0 a1 b0 b1

] [ ] [
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Prove that
(
]a, b[ \ {x},O]a,b[\{x}

)
is homeomorphic to (X,OX). You may wish to pro-

ceed as follows.

(1) Let O]a,x[ denote the subspace topology on ]a, x[ with respect to(
]a, b[ \ {x},O]a,b[\{x}

)
.

a x

] [

Let O]a0,a1[ denote the subspace topology on ]a0, a1[ with respect to (X,OX).

a0 a1

] [

By Task E2.3.1 and Example 7.3.3, observe that there is a homeomorphism

]a, x[ ]a0, a1[ .
f0

(2) Let O]x,b[ denote the subspace topology on ]x, b[ with respect to(
]a, b[ \ {x},O]a,b[\{x}

)
.

x b

] [

Let O]b0,b1[ denote the subspace topology on ]b0, b1[ with respect to (X,OX).

b0 b1

] [

By Task E2.3.1 and Example 7.3.4, observe that there is a homeomorphism

]x, b[ ]b0, b1[ .
f1
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(3) By Task E7.3.5, deduce from (1) and (2) that there is a homeomorphism

]a, b[ \ {x} X.

Task E11.2.4. Suppose that a < x1 < . . . < xn < b belong to R. Let O]a,b[ denote
the subspace topology on ]a, b[ with respect to (R,OR). Let O]a,b[\{x1,...,xn} denote the
subspace topology on ]a, b[ \ {x1, . . . , xn} with respect to

(
]a, b[ ,O]a,b[

)
.

a x1 . . . xn b

] [

Suppose that a1
0 < a1

1 < . . . < an0 < an1 belong to R. Let X be⋃
1≤i≤n

]
ai0, a

i
1

[
.

Let OX denote the subspace topology on X with respect to (R,OR).

a10 a11 . . . an0 an1

] [ ] [

Prove that
(
]a, b[ \ {x1, . . . xn},O]a,b[\{x1,...,xn}

)
is homeomorphic to (X,OX). You may

wish to proceed by induction, appealing to Task E11.2.3 and to Task E7.3.5.

Task E11.2.5. Let X be a subset of R. Let OX be the subspace topology on X with
respect to (R,OR). Suppose that x belongs to R. Let OX\{x} be the subspace topology
on X \ {x} with respect to (X,OX). Prove that (X \ {x},OX\{x}) is not connected.

Task E11.2.6. Let (X,OX) be a topological space. Suppose that x belongs to X. Let
A0 and A1 be connected subsets of X with respect to OX which both satisfy (1) and (2)
of Terminology 11.3.2. Prove that A0 = A1.

Task E11.2.7. Let X = {x} be a set with one element. As discussed in Example ??,
the unique topology OX on X is given by {∅, X}. Then (X,OX) is connected. Check
that you understand why!

Task E11.2.8. Let X be a set. Let OX be the discrete topology on X. Let A be a
subset of X. Let OA be the subspace topology on A with respect to (X,OX). Prove
that OA is the discrete topology on A.
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Task E11.2.9. Let (X,OX) be as in Example 11.4.5.

1 2

[ ]

4 7

[ ]

Prove that if x belongs to [4, 7], then Γx(X,OX) = [4, 7].

Task E11.2.10. Prove carefully the three assertions concerning numbers of connected
components in Example 11.5.2.

Task E11.2.11. In the notation of Example 11.2.5, prove that
(
I \ {t},OI\{t}

)
has two

distinct connected components, and that
(
S1 \ {f(t)} ,OS1\{f(t)}

)
is connected.

E11.3. For a deeper understanding

Task E11.3.1. Suppose that n belongs to N, and that n > 1. Suppose that x belongs
to Rn. Let ORn\{x} be the subspace topology on Rn \ {x} with respect to (Rn,ORn).
Prove that (Rn \ {x},ORn\{x}) is connected. You may wish to proceed as follows.

(1) Observe that Rn\{x} is the union of ]−∞, x[×Rn−1, ]x,∞[×Rn−1, Rn−1× ]x,∞[,
and Rn−1 × ]−∞, x[.

(2) By Task E10.3.5 and Proposition 10.7.1, observe each of these four sets is a con-
nected subset of (Rn,ORn).

(3) By Task E2.3.1, deduce that each is a connected subset of (Rn \ {x},ORn\{x}).

(4) By Task E10.3.9, deduce that (Rn \ {x},ORn\{x}) is connected.

Task E11.3.2. Let O[0,1[ be the subspace topology on [0, 1[ with respect to (R,OR).

0 1

[ [

In Task E7.3.7, you were asked to prove that the map

[0, 1[ S1
f

given by t 7→ φ(t), where

R S1
φ
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is the map of Task E5.3.27. Prove that f is not a homeomorphism.

Task E11.3.3. Let (X,OX) be a topological space. Suppose that x0 and x1 belong to
X. Prove that either Γx0(X,OX) = Γx1(X,OX), or that Γx0(X,OX) ∩ Γx1(X,OX) is empty. You may
wish to proceed as follows.

(1) Suppose that x0 and x1 belong to X, and that Γx0(X,OX)∩Γx1(X,OX) is not empty. By

Proposition 11.3.7, we have that Γx0(X,OX) and Γx1(X,OX) are connected subsets of X

with respect to OX . By Task E10.3.9, deduce that Γx0(X,OX)∪Γx1(X,OX) is a connected
subset of X with respect to OX .

(2) By Remark 11.3.6, we have that x0 belongs to Γx0(X,OX). Thus x0 belongs to

Γx0(X,OX) ∪ Γx1(X,OX). By (1) and the definition of Γx0(X,OX), deduce that Γx0(X,OX) ∪
Γx1(X,OX) is a subset of Γx0(X,OX).

(3) Deduce that Γx1(X,OX) is a subset of Γx0(X,OX).

(4) Arguing as in (2) and (3), demonstrate that Γx0(X,OX) is a subset of Γx1(X,OX).

(5) Conclude that Γx0(X,OX) = Γx1(X,OX).

Terminology E11.3.4. Let (X,OX) be a topological space. Suppose that x0 and x1

belong to X. Then Γx0(X,OX) and Γx1(X,OX) are distinct if Γx0(X,OX) ∩ Γx1(X,OX) is empty.

Remark E11.3.5. Let (X,OX) be a topological space. By Remark 11.3.6, we have
that x belongs to Γx. Thus X =

⋃
x∈X Γx(X,OX).

Terminology E11.3.6. Let (X,OX) be a topological space. Suppose that n belongs
to N. Then (X,OX) has n distinct connected components if there is a set {xj}1≤j≤n of
elements of X such that the following hold.

(1) We have that X =
⋃

1≤j≤n Γ
xj
(X,OX).

(2) For every 1 ≤ j < k ≤ n, we have that Γ
xj
(X,OX) and Γxk(X,OX) are distinct.

Remark E11.3.7. By Task E11.3.3, a topological space (X,OX) has n distinct con-

nected components if the set
{

Γx(X,OX)

}
x∈X

has exactly n elements (remember that all

equal elements of a set count as one!).
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Remark E11.3.8. In particular, there is at most one n such that (X,OX) has n distinct
connected components.

Terminology E11.3.9. Let (X,OX) be a topological space. Then (X,OX) has finitely
many distinct connected components if there is an n ∈ N such that (X,OX) has n distinct
connected components.

Example E11.3.10. Suppose that (X,OX) is connected. By Example 11.4.1, we then
have that Γx0(X,OX) = Γx1(X,OX) for all x0 and x1 which belong to X. Thus (X,OX) has
one distinct connected component.

Example E11.3.11. Let X = [1, 2] ∪ [4, 7].

1 2

[ ]

4 7

[ ]

Let OX be the subspace topology on X with respect to (R,OR). By 11.4.5, (X,OX) has
two distinct connected components.

Example E11.3.12. Let Q be the set of rational numbers. Let OQ be the subspace
topology on Q with respect to (R,OR). By Example 11.4.4, (Q,OQ) has infinitely many
distinct connected components.

Task E11.3.13. Let (X,OX) be a topological space. Suppose that x belongs to X.
Prove that Γx(X,OX) is closed with respect to OX . You may wish to proceed as follows.

(1) By Proposition 11.3.7, we have that Γx(X,OX) is a connected subset of X with

respect to OX . By Corollary E10.3.4, deduce that cl(X,OX)

(
Γx(X,OX)

)
is a connected

subset of X with respect to OX .

(2) By Remark 11.3.6, we have that x belongs to Γx(X,OX). By Remark 8.3.3, deduce

that x belongs to cl(X,OX)

(
Γx(X,OX)

)
. By (1) and the definition of Γx(X,OX), deduce

that cl(X,OX)

(
Γx(X,OX)

)
is a subset of Γx(X,OX).

(3) By Remark 8.5.4, we have that Γx(X,OX) is a subset of cl(X,OX)

(
Γx(X,OX)

)
. Deduce

that cl(X,OX)

(
Γx(X,OX)

)
is equal to Γx(X,OX).

(4) By Proposition 9.1.1, conclude that Γx(X,OX) is closed in X with respect to OX .

Task E11.3.14. Let (X,OX) be a topological space. Suppose that (X,OX) has finitely
many distinct connected components. Prove that every connected component belongs
to OX . You may wish to proceed as follows.
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(1) Since (X,OX) has finitely many distinct connected components, there is an n ∈ N,
and a set {xj}1≤j≤n, such that X =

⋃
1≤j≤n Γ

xj
(X,OX), and Γ

xj
(X,OX) and Γxk(X,OX) are

distinct for every 1 ≤ j < k ≤ n.

(2) Suppose that x belongs to X. By (1) and Task E11.3.3, observe that Γx(X,OX) =

Γxk(X,OX) for some 1 ≤ k ≤ n.

(3) By Task E11.3.13, we have that Γ
xj
(X,OX) is closed in X with respect to OX for

every 1 ≤ j ∈ n such that j 6= k. By Remark E1.3.2, deduce that X \ Γx(X,OX) =⋃
1 ≤ j ≤ n and j 6= k Γ

xj
(X,OX) is closed in X with respect to OX .

(4) Conclude that Γx(X,OX) belongs to OX .

Corollary E11.3.15. Let (X,OX) be a topological space. Suppose that X is finite.
Then every connected component of (X,OX) belongs to OX .

Proof. If X is finite, then X has only finitely many subsets. Thus (X,OX) has only
finitely many distinct connected components. By Task E11.3.14, we deduce that every
connected component of (X,OX) belongs to OX .

Task E11.3.16. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a continuous map. Suppose that x belongs to X. Prove that f
(

Γx(X,OX)

)
is a subset

of Γ
f(x)
(Y,OY ). You may wish to proceed as follows.

(1) By Proposition 11.3.7, we have that Γx(X,OX) is a connected subset of X with

respect to OX . By Task E10.3.2, deduce that f
(

Γx(X,OX)

)
is a connected subset of

Y with respect to OY .

(2) We have that f(x) belongs to f
(

Γx(X,OX)

)
. By definition of Γ

f(x)
(Y,OY ), deduce that

f
(

Γx(X,OX)

)
is a subset of Γ

f(x)
(Y,OY ).

Task E11.3.17. Let (X,OX) and (Y,OY ) be topological spaces. Let

X Y
f

be a homeomorphism. Suppose that x belongs to X. Let OΓx
(X,OX )

be the subspace

topology on Γx(X,OX) with respect to (X,OX). Let O
Γ
f(x)
(Y,OY )

be the subspace topology

on Γ
f(x)
(Y,OY ) with respect to (Y,OY ). Prove that

(
Γx(X,OX),OΓx

(X,OX )

)
is homeomorphic

to

(
Γ
f(x)
(Y,OY ),OΓ

f(x)
(Y,OY )

)
. You may wish to proceed as follows.
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(1) By Task E11.3.16, we have that f
(

Γx(X,OX)

)
is a subset of Γ

f(x)
(Y,OY ). Since f is

continuous, deduce by Task E5.1.8 and Task E5.1.9 that the map

Γx(X,OX) Γ
f(x)
(Y,OY )

f ′

given by y 7→ f(y) is continuous.

(2) Since f is a homeomorphism, there is a continuous map

Y X
g

such that g◦f = idX and f ◦g = idY . By Task E11.3.16, we have that g
(

Γ
f(x)
(Y,OY )

)
is

a subset of Γ
g(f(x))
(X,OX). Since g◦f = idX , we have that g (f(x)) = x. Thus g

(
Γ
f(x)
(Y,OY )

)
is a subset of Γx(X,OX). Since g is continuous, deduce by Task E5.1.9 and Task E5.1.9
that the map

Γ
f(x)
(Y,OY )

Γx(X,OX)

g′

given by y 7→ g(y) is continuous.

(3) Observe that g′ ◦ f ′ = idΓx
(X,OX )

, and that f ′ ◦ g′ = id
Γ
f(x)
(Y,OY )

. Conclude that f ′ is

a homeomorphism.

Task E11.3.18. Let (X,OX) and (Y,OY ) be homeomorphic topological spaces. Prove

that there is a bijection between the set Γ(X,OX) =
{

Γx(X,OX)

}
x∈X

and the set Γ(Y,OY ) ={
Γy(Y,OY )

}
y∈Y

. You may wish to proceed as follows.

(1) Let

X Y
f

be a homeomorphism. Suppose that x0 and x1 belong to X, and that Γx0(X,OX) =

Γx1(X;OX). As a corollary of (3) of Task E11.3.17, we have that Γ
f(x0)
(Y,OY ) = f

(
Γx0(X,OX)

)
,

and that Γ
f(x1)
(Y,OY ) = f

(
Γx1(X,OX)

)
. Since Γx0(X,OX) = Γx1(X,OX), we have that f

(
Γx0(X,OX)

)
=

f
(

Γx1(X,OX)

)
. Deduce that Γ

f(x0)
(Y,OY ) = Γ

f(x1)
(Y,OY ).
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(2) By Task E7.3.2, there is a homeomorphism

Y X
g

such that g ◦ f = idX and f ◦ g = idY . Suppose that y0 and y1 belong to Y , and

that Γy0(Y,OY ) = Γy1(Y,OY ). Arguing as in (1), demonstrate that Γ
g(y0)
(X,OX) = Γ

g(y1)
(X,OX).

(3) Let

ΓX ΓY
f ′

be the map given by Γx(X,OX) 7→ Γ
f(x)
(Y,OY ). By (1), this map is well-defined. Let

ΓY ΓX
g′

be the map given by Γy(Y,OY ) 7→ Γ
g(y)
(X,OX). By (2), this map is well-defined. Observe

that g′ ◦ f ′ = idΓ(X,OX )
, and that f ′ ◦ g′ = idΓ(Y,OY )

,

Corollary E11.3.19. Let (X,OX) and (Y,OY ) be homeomorphic topological spaces.
Suppose that there is an n ∈ N such that (X,OX) has n distinct connected components.
Then (Y,OY ) has n distinct connected components.

Proof. Follows immediately from Task E11.3.18 and Remark E11.3.7.

Notation E11.3.20. Let J be a set. For every j which belongs to J , let Xj be a set.
Let

⊔
j∈J Xj be the corresponding coproduct, in the sense of Definition A.3.3. We denote

by

Xj

⊔
j∈J Xj

ij

the map given by x 7→ (x, j).

Task E11.3.21. Let J be a set. For every j which belongs to J , let (Xj ,OXj ) be a
topological space. Let O⊔

j∈J Xj
be the set of subsets U of the coproduct

⊔
j∈J Xj such

that i−1
j (U) belongs to OXj . Prove that

(⊔
j∈J Xj ,O⊔

j∈J Xj

)
is a topological space.

You may wish to look back at the proof of Proposition 6.1.5.

Terminology E11.3.22. We refer to O⊔
j∈J Xj

as the coproduct topology on
⊔
j∈J Xj .
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Task E11.3.23. Let J be a set. For every j which belongs to J , let (Xj ,OXj ) be
a topological space. Let

⊔
j∈J Xj be equipped with the coproduct topology O⊔

j∈J Xj
.

Observe that

Xj

⊔
j∈J Xj

ij

is continuous, for every j which belongs to J .

Task E11.3.24. For every pair of integers j and n such that 0 ≤ j ≤ n, let (Xj ,OXj ) be

a topological space. How many connected components does
(⊔

0≤j≤nXj ,O⊔
0≤j≤nXj

)
have? Prove that your guess holds!

E11.4. Exploration — bijections

Task E11.4.1. Suppose that a < b and a0 < a1 < b0 < b1 belong to R. Prove that
there is a bijection

]a, b[ ]a0, a1[ ∪ ]b0, b1[ .

You may wish to proceed as follows.

(1) A homeomorphism is in particular a bijection. By Example 7.3.4, we thus have
that there is a bijection

]a, b[ ]a0, a1[ .
f

By Task E7.2.1, deduce that f is an injection.

(2) As observed in Remark A.2.3, the inclusion map

]a0, a1[ ]a0, a1[ ∪ ]b0, b1[
i

is an injection. By Proposition A.2.2, deduce that the map

]a, b[ ]a0, a1[ ∪ ]b0, b1[
f ◦ i

is an injection.

(3) By Example 7.3.10 and Task E7.3.2, there is a bijection

R ]a, b[ .
g

By Task E7.2.1, deduce that f is an injection.
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(4) The inclusion map

]a0, a1[ ∪ ]b0, b1[ R
j

is an injection. By Proposition A.2.2, deduce that the map

]a0, a1[ ∪ ]b0, b1[ ]a, b[
g ◦ j

is an injection.

(5) By (2), (4), and Proposition A.2.5, conclude that there is a bijection

]a, b[ ]a0, a1[ ∪ ]b0, b1[ .

Task E11.4.2. Find a bijection

[1, 2] ∪ [4, 7] [1, 5]
f

You may wish to proceed as follows.

(1) Let f be the identity on [1, 2].

(2) Send 4 to 3, and send 7 to 5.

(3) Appealing to Task E11.4.1, let f map ]4, 7[ bijectively to ]2, 3[ ∪ ]3, 5[.

Task E11.4.3. Find a bijection between I and S1. You may wish to proceed as follows.

(1) Map 0 to (0, 1), and map 1 to (0,−1).

(2) By Task E11.4.1, observe that there is a bijection from ]0, 1[ to
]
0, 1

2

[
∪
]

1
2 , 1
[
.

(3) Use the bijection of (2) and the map φ of Task E5.3.27to map ]0, 1[ bijectively to
the union of {

(x, y) ∈ S1 | y > 0
}

and {
(x, y) ∈ S1 | y < 0

}
.

Task E11.4.4. Find a bijection between R and Rn. You may wish to proceed as follows.
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(1) Observe that the map

R Rn
f

given by x 7→ (x, 0, . . . , 0) is an injection.

(2) By Example 7.3.10 and Task E7.3.2, there is a bijection

R
]
1, 3

2

[
.

g1

By Task E7.2.1, we have that g1 is an injection. Let

R
]
n, n+ 1

2

[gn

be the map given by x 7→ g1(x) + n− 1. Since g1 is an injection, deduce that gn is
an injection.

(3) Deduce from (2) that the map

Rn R

given by (x1, . . . , xn) 7→ (g1(x1), . . . , gn(xn)) is an injection.

(4) By (1), (3), and Proposition A.2.5, deduce that there is a bijection between R and
Rn.

E11.5. Exploration — totally disconnected topological spaces

Definition E11.5.1. A topological space (X,OX) is totally disconnected if, for every x
which belongs to X, the connected component of x in (X,OX) is {x}.

Example E11.5.2. Let X be a set. Let OX be the discrete topology on X. By Example
11.4.2, we have that (X,OX) is totally disconnected.

Example E11.5.3. Let Q be the set of rational numbers. Let OQ be the subspace
topology on Q with respect to (R,OR). By Example 11.4.4, we have that (Q,OQ) is
totally disconnected.

Example E11.5.4. By Task E11.1.12, the Sorgenfrey line (R,OSorg) is totally discon-
nected.
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Notation E11.5.5. Let Cantor be the subset of I given by

I \

 ⋃
m∈N

⋃
n∈N, 1≤n≤3m−1

]
3(n− 1) + 1

3m
,
3(n− 1) + 2

3m

[ .

Remark E11.5.6. In other words, Cantor is obtained as follows.

(1) Delete
]

1
3 ,

2
3

[
from I.

0 1

] [

1
3

2
3

(2) Delete
]

1
9 ,

2
9

[
and

]
7
9 ,

8
9

[
from I.

0 1

] [

1
3

2
3

] [

1
9

2
9

] [

7
9

8
9

(3) Delete
]

1
27 ,

2
27

[
,
]

7
27 ,

8
27

[
,
]

19
27 ,

20
27

[
, and

]
25
27 ,

26
27

[
from I.

] [] [ ] [] [ ] [ ] [ ] [

0 1

(4) Continue this pattern of deletions of open intervals for all 3n, where n belongs to
N.

Terminology E11.5.7. We refer to Cantor as the Cantor set.

Task E11.5.8. Let OCantor be the subspace topology on Cantor with respect to (I,OI).
Prove that (Cantor,OCantor) is totally disconnected.
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12. Tuesday 11th February

12.1. Further examples of the number of distinct connected
components as an invariant

Example 12.1.1. Let K be the subset of R2 given by the union of{
(0, y) ∈ R2 | −1 ≤ y ≤ 1

}
and {

(x, y) ∈ R2 | x = y and −1 ≤ y ≤ 1
}
.

Let OK be the subspace topology on K with respect to (R2,OR2).

Let (T,OT) be as in Example 11.5.2.

Suppose that

K T
f

is a homeomorphism. Let x be the point (0, 0) of K.
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Let OK\{x} be the subspace topology on K \ {x} with respect to (K,OK). Then(
K \ {x},OK\{x}

)
has four distinct connected components.

Let OT\{f(x)} be the subspace topology on T \ {f(x)} with respect to (T,OT). Suppose
that f(x) is (0, 1).

Then (
T \ {f(x)} ,OT\{f(x)}

)
has three distinct connected components.

Suppose that f(x) = (x′, y′). Suppose that 0 < |x′| < 1.

Then (
T \ {f(x)} ,OT\{f(x)}

)
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has two distinct connected components.

Suppose that −1 < y′ < 1.

Then (
T \ {f(x)} ,OT\{f(x)}

)
has two distinct connected components.

Suppose that f(x) is (−1, 1), (1, 1), or (0,−1).

Then (
T \ {f(x)} ,OT\{f(x)}

)
is connected.
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Thus (
T \ {f(x)} ,OT\{f(x)}

)
has at most three distinct connected components. Since f is a homeomorphism, we have,
by Task E7.1.20, that there is a homeomorphism

K \ {x} T \ {f(x)} .

By Corollary E11.3.19, since (
K \ {x},OK\{x}

)
has four distinct connected components, we deduce that(

T \ {f(x)} ,OT\{f(x)}
)

has four distinct connected components. Thus we have a contradiction. We conclude
that there does not exist a homeomorphism

K T.

In other words, (K,OK) is not homeomorphic to (T,OT).

Remark 12.1.2. To fill in the details of the calculations of numbers of distinct connected
components in Example 12.1.1 is the topic of Task ??.

Example 12.1.3. Let Ø be the subset of R2 given by the union of S1 and

{(x, y) | −1 ≤ x ≤ 1 and x = y} .

Let OØ be the subspace topology on Ø with respect to (R2,OR2).

Let (I,OI) be as in Example 11.5.2.
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Suppose that

Ø I
f

is a homeomorphism. Let x be the point
(

1√
2
, 1√

2

)
of Ø. Let y be the point

(
− 1√

2
,− 1√

2

)
of Ø.

Let OØ\{x,y} be the subspace topology on Ø \ {x, y} with respect to (Ø,OØ). Then(
Ø \ {x, y},OØ\{x,y}

)
has five distinct connected components.

Suppose that neither f(x) nor f(y) is (0, 0) or (0, 1).

Then (
I \ {f(x), f(y)} ,OI\{f(x),f(y)}

)
has three distinct connected components.
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Suppose that one of f(x) or f(y) is (0, 0) or (0, 1), and that the other is neither (0, 0)
nor (0, 1).

Then (
I \ {f(x), f(y)} ,OI\{f(x),f(y)}

)
has two distinct connected components.

Suppose that one of f(x) or f(y) is (0, 0), and that the other is (0, 1).

258



12.1. Further examples of the number of distinct connected components as an invariant

Then (
I \ {f(x), f(y)} ,OI\{f(x),f(y)}

)
is connected.

Thus (
I \ {f(x), f(y)} ,OI\{f(x),f(y)}

)
has at most three distinct connected components. Since f is a homeomorphism, we have
by Task E7.1.20 that there is a homeomorphism

Ø \ {x, y} I \ {f(x), f(y)} .

By Corollary E11.3.19, since (
Ø \ {x, y},OØ\{x,y}

)
has five distinct connected components, we deduce that(

I \ {f(x), f(y)} ,OI\{f(x),f(y)}
)

has five distinct connected components. Thus we have a contradiction. We conclude
that there does not exist a homeomorphism

Ø I.

In other words, (Ø,OØ) is not homeomorphic to (I,OI).

Remark 12.1.4. We cannot distinguish (Ø,OO) from (I,OI) by removing just one point
from each topological space and counting the resulting numbers of distinct connected
components. To check that you understand why is the topic of Task E12.2.2.

Remark 12.1.5. To fill in the details of the calculations of numbers of distinct connected
components in Example 12.1.3 is the topic of Task E12.2.3.

259



12. Tuesday 11th February

12.2. Can we take our technique further?

Remark 12.2.1. In all of our examples of distinguishing a pair of topological spaces by
means of connectedness, at least one of the two has been ‘one dimensional’: built out of
lines. Can our technique distinguish between ‘higher dimensional’ topological spaces?

Remark 12.2.2. Let us try to distinguish (T 2,OT 2) from (S2,OS2). Let X be a sub-
set of T 2 such that (X,OX) is homeomorphic to (S1,OS1), where OX is the subspace
topology on X with respect to (T 2,OT 2).

For the X depicted above, we have that T 2 \X is as depicted below.

Let OT 2\X be the subspace topology on T 2 \X with respect to (T 2,OT 2). We have that
(T 2 \X,OT 2\X) is homeomorphic to a cylinder.

In particular, we have that (T 2 \X,OT 2\X) is connected. Let Y be a subset of S2 such
that (Y,OY ) is homeomorphic to (S1,OS1), where OY is the subspace topology on Y
with respect to (S2,OS2).

For any such Y , it seems intuitively that S2 \ Y has exactly two distinct connected
components. In the example depicted above, we obtain the open disc enclosed by the
circle, and the open subset of S2 which remains after cutting out the closed disc enclosed
by the circle.
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Suppose that Y is the equator.

Then S2 \ Y consists of the northern hemisphere and the southern hemisphere.

Suppose that

T 2 S2
f

is a homeomorphism. Let (X,OX) be as above, with the property that (T 2 \X,OT 2\X)
is connected. Let S2 \ f(X) be equipped with the subspace topology OS2\f(X) with
respect to (S2,OS2). Since f is a homeomorphism, we have, by Task E7.1.20, that there
is a homeomorphism

T 2 \ {X} S2 \ f(X).

By Corollary 10.5.2, we deduce that
(
S2 \ f(X),OS2\f(X)

)
is connected. Let Of(X) be

the subspace topology on f(X) with respect to (S2,OS2).
Since f is a homeomorphism, we have, by Task ??, that

(
f(X),Of(X)

)
is homeomor-

phic to (S1,OS1). If our intuition is correct, we deduce that
(
S2 \ f(X),OS2\f(X)

)
has

exactly two distinct connected components. Thus we have a contradiction. We deduce
that there does not exist a homeomorphism

T 2 S2.

In other words, (T 2,OT 2) and (S2,OS2) are not homeomorphic.
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Remark 12.2.3. This argument does prove that (T 2,OT 2) is not homeomorphic to
(S2,OS2). However, we have to be very careful! We must rigorously prove that (S2 \
Y,OS2\Y ) has exactly two distinct connected components.

This is not at all an easy matter! Homeomorphism is a very flexible notion, and Y
could be very wild. How do we know that the two examples we considered in Remark
12.2.2 are representative of all possible Y ? We need to be sure that the requirement
that we have a homeomorphism, as opposed to only a continuous surjection, excludes
examples which are as wild as the Peano curve of Task ??.

The fact that (S2 \ Y,OS2\Y ) has exactly two distinct connected components, for any
(Y,OY ) which is homeomorphic to (S1,OS1), is known as the Jordan curve theorem.

12.3. Locally connected topological spaces

Definition 12.3.1. A topological space (X,OX) is locally connected if, for every x
which belongs to X, and every neighbourhood U of x in X with respect to OX , there is
a neighbourhood W of x in X with respect to OX which is both a connected subset of
X with respect to OX , and a subset of U .

Example 12.3.2. Suppose that x belongs to R. Let U be a neighbourhood of x in
R with respect to OR. By definition of OR, there is an open interval ]a, b[ to which x
belongs, and which is a subset of U .

a bx

] [

] [ ] [

U

By Task E10.3.5, we have that ]a, b[ is a connected subset of R with respect to OR. We
conclude that (R,OR) is locally connected.

Example 12.3.3. Let X = [1, 2] ∪ [4, 7].

1 2

[ ]

4 7

[ ]

Let OX denote the subspace topology on X with respect to (R,OR). Suppose that x
belongs to [4, 7]. Let U be a neighbourhood of x in X with respect to OX .
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1 2

[ ]

4 x 7

[ ]

] [ [ [

U

By definition of OX and OR, there is an open interval ]a, b[, to which x belongs, such
that X ∩ ]a, b[ is a subset of U .

1 2

[ ]

4 a x b 7

[ ]

] [ [ [

] [

The following hold.

(1) By Task E1.3.5, we have that [4, 7] ∩ ]a, b[ is an interval. By Task E10.3.5, we
deduce that [4, 7] ∩ ]a, b[ is a connected subset of R with respect to OR.

(2) By definition of OX , we have that X ∩ ]a, b[ belongs to OX . As was demonstrated
in Example 9.6.2, we also have that [4, 7] belongs to OX . Thus

[4, 7] ∩ ]a, b[ = [4, 7] ∩ (X ∩ ]a, b[)

belongs to OX .

By Task E12.3.2, we deduce from (1) and (2) that [4, 7] ∩ ]a, b[ is a connected subset of
X with respect to OX .

In addition, we have that x belongs to [4, 7]∩]a, b[. By (2), we thus have that [4, 7]∩]a, b[
is a neighbourhood of x in X with respect to OX . Moreover, since [4, 7] is a subset of
X, and since X ∩ ]a, b[ is a subset of U .

Suppose now that x belongs to [1, 2]. Let U be a neighbourhood of x in X with respect
to OX .

1 x 2

[ ]

4 7

[ ]

] [ ] [

U
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By an analogous argument to that which we gave in the case that x belongs to [4, 7],
there is an open interval ]a′, b′[ such that [1, 2]∩ ]a′, b′[ is a neighbourhood of x in X with
respect to OX , is a connected subset of X with respect to OX , and is a subset of U .

1 x 2

[ ]

4 7

[ ]

] [ ] [

] [

To fill in the details is the topic of Task E12.2.5. We conclude that (X,OX) is locally
connected.

Remark 12.3.4. The ingredients of this argument can be organised into a more general
method for proving that a topological space is locally connected. By Task E2.3.1 and
Task E12.3.9, both [1, 2] and [4, 7] are connected subsets of X with respect to OX .
Moreover, as was demonstrated in Example 9.6.2, both [1, 2] and [4, 7] belong to OX .
By Task E12.3.8, we conclude that (X,OX) is locally connected.

Example 12.3.5. By Example 12.3.2, we have that (R,OR) is locally connected. By
Task E12.1.7, we deduce that (R2,OR2) is locally connected.

Example 12.3.6. By Task E12.3.9, we have that (I,OI) is locally connected.

0 1

[ ]

By Task E12.1.7, we deduce that (I2,OI2) is locally connected.

Example 12.3.7. By Example 12.3.6, we have that (I2,OI2) is locally connected. By
Task E12.3.10, we deduce that (T 2,OT 2) is locally connected.
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Remark 12.3.8. By a similar argument, (M2,OM2) and (K2,OK2) are locally con-
nected. To check that you understand this is the topic of Task E12.2.6.

Example 12.3.9. By Example 12.3.6, we have that (I2,OI2) is locally connected. By
Task E7.2.9, there is a homeomorphism

I2 D2.

By Task E12.1.8, we deduce that (D2,OD2) is connected.

Example 12.3.10. By Example 12.3.9, we have that (D2,OD2) is locally connected.
By Task E12.3.10, we deduce that (S2,OS2) is locally connected.

Example 12.3.11. Let OQ be the subspace topology on Q with respect to (R,OR).
Suppose that q belongs to Q. By Example 11.4.4, we have that Γq(Q,OQ) is {q}. In other

words, {q} is the only connected subset of Q to which q belongs. However, the set {q}
does not belong to OQ. To check this is the topic of Task E12.2.4. Thus there is no
neighbourhood of q in Q with respect to OQ which is a connected subset of Q with
respect to OQ. We conclude that (Q,OQ) is not locally connected.

Remark 12.3.12. We could also argue as follows. By Example 11.4.4, we have that
Γq(Q,OQ) is {q}. The set {q} does not belong to OQ, as you are asked to check in Task

E12.2.4. By Corollary E12.3.4, we deduce that (Q,OQ) is not locally connected.

12.4. A topological space which is connected but not locally
connected

Example 12.4.1. Let A be the subset of R2 given by the union of the sets⋃
n∈N

{(
1

2n−1
, y

)
| y ∈ [0, 1]

}
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and ⋃
n∈N

{
(x,−2nx+ 2) | x ∈

[
1

2n
,

1

2n−1

]}
.

(1, 0)

(1, 1)

( 1
2 , 0)

( 1
2 , 1)

( 1
4 , 0)

( 1
4 , 1)

( 1
8 , 0)

( 1
8 , 1)

Let X be the closure of A in R2 with respect to OR2 . By Task E8.1.7, we have that X
is the union of A and the line {0} × [0, 1].

(1, 0)

(1, 1)

( 1
2 , 0)

( 1
2 , 1)

( 1
4 , 0)

( 1
4 , 1)

( 1
8 , 0)

( 1
8 , 1)(0, 1)

(0, 0)

Let OX be the subspace topology on X with respect to (R2,OR2). By Task E10.1.6, we
have that (X,OX) is connected.

Let U be the neighbourhood of
(
0, 1

2

)
in X with respect to OX given by

X ∩
(]
−1, 9

32

[
×
]

1
4 ,

3
4

[)
.

Let OU be the subspace topology on U with respect to (X,OX).

(1, 0)

(1, 1)

( 1
2 , 0)

( 1
2 , 1)

( 1
4 , 0)

( 1
4 , 1)

( 1
8 , 0)

( 1
8 , 1)(0, 1)

(0, 0)

Suppose that (x, y) belongs to U . Let B be a subset of U to which both (0, 1
2) and (x, y)

belong. Let OB be the subspace topology on B with respect to (U,OU ). Suppose that
x = 1

2n , where n belongs to N.
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x

Let c be a real number with the property that 7
2n+2 < c < 1

2n . Then B is the union of,
for example,

B ∩
(
]−1, c[×

]
1
4 ,

3
4

[)
and

B ∩
(
]c, 2[×

]
1
4 ,

3
4

[)
,

and this union is disjoint. The only significance in the choice of −1 and 2 is that −1 < 0,
and 2 > 1. Both

B ∩
(
]−1, c[×

]
1
4 ,

3
4

[)
and

B ∩
(
]c, 2[×

]
1
4 ,

3
4

[)
belong to OB. Thus B is not a connected subset of U with respect to OU .

x

c

Suppose instead that 5
2n+2 < x < 7

2n+2 , where n belongs to N.

x

Let c be a real number with the property that 1
2n+1 < c < 5

2n+2 . Then B is the union of,
for example,

B ∩
(
]−1, c[×

]
1
4 ,

3
4

[)
and

B ∩
(
]c, 2[×

]
1
4 ,

3
4

[)
,

and this union is disjoint. Moreover, both

B ∩
(
]−1, c[×

]
1
4 ,

3
4

[)
and

B ∩
(
]c, 2[×

]
1
4 ,

3
4

[)
belong to OB. Thus B is not a connected subset of U with respect to OU .
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x

c

We have now demonstrated that if x > 0, then there is no connected subset of U

with respect to OU to which both (0, 1
2) and (x, y) belong. Thus Γ

(0, 1
2)

(U,OU ) is a subset of

{0} ×
]

1
4 ,

3
4

[
. We have that {0} ×

]
1
4 ,

3
4

[
is a connected subset of U with respect to OU .

To check this is the topic of Task E12.2.7. We conclude that Γ
(0, 1

2)
(U,OU ) is {0} ×

]
1
4 ,

3
4

[
.

Suppose that {0} ×
]

1
4 ,

3
4

[
belongs to OU . By Task E2.3.1 and the definition of OR2 ,

there are real numbers a0 < 0 < a1 and 1
4 ≤ b0 <

1
2 < b1 ≤ 3

4 such that

U ∩ (]a0, a1[× ]b0, b1[)

is a subset of {0} ×
]

1
4 ,

3
4

[
. Let n be a natural number such that 0 < 1

2n < a1. Then
( 1

2n ,
1
2) belongs to

U ∩ (]a0, a1[× ]b0, b1[) .

1
2n

Since ( 1
2n ,

1
2) does not belong to {0}×

]
1
4 ,

3
4

[
, we have a contradiction. We conclude that

{0} ×
]

1
4 ,

3
4

[
does not belong to OU .

Putting everything together, we have demonstrated that Γ
(0, 1

2)
(U,OU ) does not belong to

OU . By Task E12.3.3, we conclude that (X,OX) is not locally connected.

Remark 12.4.2. The topological space (X,OX) is a variant of a topological space
known as the topologist’s sine curve.

Remark 12.4.3. We could have proven that (X,OX) is not locally connected by working
with any (0, y) such that 0 ≤ y ≤ 1 in place of (0, 1

2). To check that you understand this
is the topic of Task E12.2.8.

Remark 12.4.4. In a nutshell, the reason that (X,OX) is not locally connected is that,
for any particular (x, y) which belongs to X with x > 0, there is a ‘gap’ between (x, y)
and the y-axis, which is detected when we explore connectedness ‘locally’ around (x, y).

When we work ‘globally’, namely when we consider (X,OX) as a whole, there is no
‘gap’ between the y-axis and the rest of X, because the intervals zig-zag infinitely closely
towards the y-axis.
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E12.1. Exam questions

Task E12.1.1 (Continuation Exam, August 2013). Let X be the subset of R2 depicted
below.

Let OX be the subspace topology on X with respect to (R2,OR2). Let Y be the subset
of R2 depicted below.

Let OY be the subspace topology on Y with respect to (R2,OR2). Is (X,OX) homeo-
morphic to (Y,OY )?

Task E12.1.2. View the letters B, C, D, E, F, G, H as subsets of R2. Let each be
equipped with the subspace topology with respect to (R2,OR2). Which of the letters are
homeomorphic, and which are not?

Task E12.1.3. View each of the following shapes as a subset of R2. Each consists of
intervals glued together. In particular, all of the shapes have no ‘inside’.
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Let each shape be equipped with its subspace topology with respect to (R2,OR2). Prove
that no two of the shapes are homeomorphic.

Task E12.1.4. Let X be the union of D2 and [3, 4]× [2, 3].

Let OX be the subspace topology on X with respect to (R2,OR2). Prove that (X,OX)
is locally connected. You may wish to appeal to Task E12.3.8.

Task E12.1.5. Let X be a set. Let OX be the discrete topology on X. Prove that
(X,OX) is locally connected.

Task E12.1.6. Let X be the subset of R given by the union of {0} and
{

1
n | n ∈ N

}
.

Let OX be the subspace topology on X with respect to (R,OR). Prove that (X,OX) is
not locally connected.

0 1
2

1

Task E12.1.7. Let (X,OX) and (Y,OY ) be locally connected topological spaces. Prove
that (X × Y,OX×Y ) is locally connected.
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Task E12.1.8. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that (X,OX)
is locally connected. Let

X Y
f

be a homeomorphism. Prove that (Y,OY ) is locally connected.

E12.2. In the lecture notes

Task E12.2.1. Prove carefully the assertions concerning numbers of distinct connected
components in Example 12.1.1.

Task E12.2.2. How many distinct connected components can we obtain by removing
one point from O? Explain why your answer means that we cannot distinguish (Ø,OO)
from (I,OI) by removing just one point from each topological space, and counting the
resultings numbers of distinct connected components.

Task E12.2.3. Prove carefully the assertions concerning numbers of distinct connected
components in Example 12.1.3.

Task E12.2.4. Let OQ be the subspace topology on Q with respect to (R,OR). Suppose
that q belongs to Q. Prove that {q} does not belong to OQ.

Task E12.2.5. Let (X,OX) be as in Example 12.3.3. Suppose that x belongs to [1, 2].
Let U be a neighbourhood of x in X with respect to OX . Prove that there is an open
interval ]a′, b′[ such that [1, 2]∩ ]a′, b′[ is a neighbourhood of x in X with respect to OX ,
is a connected subset of X with respect to OX , and is a subset of U .

Task E12.2.6. Prove that (M2,OM2) is locally connected.

Task E12.2.7. Let (U,OU ) be as in Example 12.4.1. Prove that {0} ×
]

1
4 ,

3
4

[
is a

connected subset of U with respect to OU . You may wish to proceed as follows.

(1) Let O{0}×] 14 ,
3
4 [ be the subspace topology on {0}×

]
1
4 ,

3
4

[
with respect to (R2,OR2).

Let O] 14 ,
3
4 [ be the subspace topology on

]
1
4 ,

3
4

[
with respect to (R,OR). Prove that(

{0} ×
]

1
4 ,

3
4

[
,O{0}×] 14 ,

3
4 [

)
is homeomorphic to

(]
1
4 ,

3
4

[
,O] 14 ,

3
4 [

)
. You may wish to

look back at your argument for Task E7.1.8.
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(2) Appeal to Task E2.3.1, and to Corollary 10.5.2.

Task E12.2.8. Let (X,OX) be as in Example 12.4.1. Prove that (X,OX) is not locally
connected by working with (0, 1) rather than (0, 1

2). Can you furthermore see how to
adapt the argument of Example 12.4.1 to any (0, y) such that 0 ≤ y ≤ 1?

Task E12.2.9. Let X be the subset of R2 given by the union of the sets {0, 1}×
[
0, 1

2

]
,

I × {0}, ⋃
n≥0

{(
1

2n
, y

)
| y ∈

[
1

2
, 1

]}
,

and ⋃
n≥0

{
(x, 2nx) | x ∈

[
1

2n+1
,

1

2n

]}
,

where n is an integer.

(0, 1)

(0, 12 )

(0, 0) (1, 0)

(1, 1

(1, 12 )

( 1
2 , 1)

( 1
2 ,

1
2 )

Let OX be the subspace topology on X with respect to (R2,OR2). Check that you
understand Example 12.4.1 by proving that (X,OX) is not locally connected.

Remark E12.2.10. The topological space (X,OX) is a variant of a topological space
known as the Warsaw circle.

E12.3. For a deeper understanding

Task E12.3.1. Let X be the subset of R given by

]0, 1[ ∪ {2} ∪ ]3, 4[ ∪ {5} ∪ ]6, 7[ ∪ {8} · · · .

In other words, X is given by⋃
n∈N

]3n− 3, 3n− 2[ ∪ {3n− 1}.
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Let OX be the subspace topology on X with respect to (R,OR).

0 1

] [

2 3 4

] [

5 6 7

] [

Let Y be the subset of R given by

]0, 1] ∪ ]3, 4[ ∪ {5} ∪ ]6, 7[ ∪ {8} ∪ · · · .

In other words, Y is given by

]0, 1] ∪

(⋃
n∈N

]3n, 3n+ 1[ ∪ {3n+ 2}

)
.

Let OY be the subspace topology on OY with respect to (R,OR).

0 1

] ]

2 3 4

] [

5 6 7

] [

Prove that there is a continuous bijection

X Y
f

and a continuous bijection

Y X,
g

but that (X,OX) is not homeomorphic to (Y,OY ). You may wish to proceed to as
follows.

(1) Let

X Y
f

be given by

f(x) =

{
x if x 6= 2,

1 if x = 2.

Observe that f is a bijection. By Task E5.3.14 and Task E5.3.23 (1), observe that
f is continuous.
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(2) Let

Y X
g

be given by

g(x) =


x
2 if x ∈ ]0, 1],
x−2

2 if x ∈ ]3, 4[,

x− 3 otherwise.

Observe that g is a bijection. By Task E5.3.14 and Task E5.3.23 (1), observe that
g is continuous.

(3) Suppose that y belongs to ]0, 1]. Demonstrate that Γy is ]0, 1].

(4) Suppose that (X,OX) and (Y,OY ) are homeomorphic. Let O]0,1] be the subspace
topology on ]0, 1] with respect to (Y,OY ). By Task E11.3.17, deduce from (3)
that there is an x which belongs to X with the property that

(
]0, 1] ,O]0,1]

)
is

homeomorphic to (Γx,OΓx), where OΓx is the subspace topology on Γx with respect
to (X,OX).

(5) Suppose that n belongs to N. Demonstrate that if x belongs to ]3n− 3, 3n− 2[,
then Γx is ]3n− 3, 3n− 2[. Demonstrate that if x is 3n− 1, then Γx is {3n− 1}.

(6) Let O]3n−3,3n−2[ be the subspace topology on ]3n− 3, 3n− 2[ with respect to
(X,OX). By Task E2.3.1 and Task E11.1.3 we have that

(
]0, 1] ,O]0,1]

)
is not home-

omorphic to
(
]3n− 3, 3n− 2[ ,O]3n−3,3n−2[

)
.

(7) Let O{3n−1} be the subspace topology on {3n− 1} with respect to (X,OX). Ob-
serve that

(
]0, 1] ,O]0,1]

)
is not homeomorphic to

(
{3n− 1},O{3n−1}

)
, since there

cannot be a bijection between a set with one element and ]0, 1]. To check that you
understand this was the topic of Task E7.2.2.

(8) Observe that (6) and (7) together contradict (4) and (5). Conclude that (X,OX)
and (Y,OY ) are not homeomorphic.

Task E12.3.2. Let (X,OX) be a topological space. Let U be a subset of X which
belongs to OX . Let OU be the subspace topology on U with respect to (X,OX). Let
A be a connected subset of X with respect to OX . Suppose that A is a subset of U .
Prove that A is a connected subset of U with respect to OU . You may wish to proceed
as follows.

(1) Let U0 and U1 be subsets of A such that A = U0 tU1, and such that both U0 and
U1 belong to OU . By Task E2.3.3 (1), observe that U0 and U1 belong to OX .

(2) Since A is a connected subset of X with respect to OX , deduce that at least one
of U0 and U1 is empty. Conclude that A is a connected subset of U with respect to
OU .
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Task E12.3.3. Let (X,OX) be a topological space. Prove that (X,OX) is locally
connected if and only if, for every subset U of X which belongs to OX , we have that
Γx(U,OU ) belongs to OX , where OU is the subspace topology on U with respect to (X,OX).
You may wish to proceed as follows.

(1) Suppose that (X,OX) is locally connected. Let U be a subset of X which belongs
to OX . Let OU be the subspace topology on U with respect to (X,OX). Suppose
that x belongs to U . Since (X,OX) is locally connected, there is a neighbourhood
W of x in X with respect to OX such that W is a connected subset of X with
respect to OX , and such that W is a subset of U . By Task E12.3.2, we have that
W is a connected subset of U with respect to OU . Deduce that W is a subset of
Γx(U,OU ).

(2) By Task E8.3.1, deduce that Γx(U,OU ) belongs to OX .

(3) Conversely, suppose that, for every subset U of X which belongs to OX , we
have that Γx(U,OU ) belongs to OX . Suppose that x belongs to X. Let Ux be a
neighbourhood of x in X with respect to OX . Then Γx(Ux,OUx ) is a connected subset

of Ux with respect to OUx . By assumption, we have that Γx(Ux,OUx ) belongs to OX .

Conclude that (X,OX) is locally connected.

Corollary E12.3.4. Let (X,OX) be a locally connected topological space. Suppose
that x belongs to (X,OX). Then Γx(X,OX) belongs to OX .

Proof. Follows immediately from Task E12.3.3, since X belongs to OX .

Task E12.3.5. Let (X,OX) be a locally connected topological space. Let U be a subset
of X which belongs to OX . Let OU be the subspace topology on U with respect to
(X,OX). Prove that (U,OU ) is locally connected. You may wish to appeal to Task
E12.3.3, Task E2.3.3 (1), and Task E2.3.1.

Task E12.3.6. Prove that a topological space (X,OX) is both totally disconnected and
locally connected if and only if OX is the discrete topology on X. You may wish to
appeal to Task E12.1.5 and to Corollary E12.3.4.

Task E12.3.7. Let (X,OX) be a topological space. Suppose that X is finite. Prove
that (X,OX) is locally connected. You may wish to appeal to Task E11.3.15 and to
Task E12.3.3.

Task E12.3.8. Let (X,OX) be a topological space. Let X0 and X1 be subsets of X
which belong to OX . Suppose that X = X0 tX1. Let OX0 be the subspace topology on
X0 with respect to (X,OX), and let OX1 be the subspace topology on X1 with respect
to (X,OX). Prove that (X,OX) is locally connected if and only if both (X0,OX0) and
(X1,OX1) are locally connected. You may wish to proceed as follows.

(1) Suppose that (X,OX) is locally connected. By Task E12.3.5, deduce that (X0,OX0)
and (X1,OX1) are locally connected.
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(2) Suppose that (X0,OX0) and (X1,OX1) are locally connected. Suppose that x
belongs to X. Since X = X0 tX1, observe that either x belongs to X0 or that x
belongs to X1.

(3) Suppose that x belongs to X0. Let U be a neighbourhood of x in X with respect
to OX . Then X0 ∩ U is a neighbourhood of x in X0 with respect to OX0 . Since
(X0,OX0) is locally connected, deduce that there is a neighbourhood Ux of x in X0

with respect to OX0 such that Ux is both a connected subset of X0 with respect to
OX0 , and a subset of X0 ∩ U .

(4) Since X0 ∩ U is a subset of U , observe that Ux is a subset of U .

(5) By Task E2.3.3 (1), since X0 belongs to OX and Ux is a neighbourhood of x in
X0 with respect to OX0 , deduce that Ux is a neighbourhood of x in X with respect
to OX .

(6) By Task E2.3.1, since Ux is a connected subset of X0 with respect to OX0 , deduce
that Ux is a connected subset of X with respect to OX .

(7) By an analogous argument, observe that if x belongs to X1, then there is a neigh-
bourhood Ux of x in X with respect to OX which is both a connected subset of X
with respect to OX , and a subset of U .

(8) Conclude from (4) – (7) that (X,OX) is locally connected.

Task E12.3.9. Let X be an interval. Let OX be the subspace topology on X with
respect to (R,OR). Prove that (X,OX) is locally connected. You may wish to appeal
to Task E1.3.5 and to Task E10.3.5.

Task E12.3.10. Let (X,OX) be a locally connected topological space. Let ∼ be an
equivalence relation on X. Prove that (X/∼,OX/∼) is locally connected. You may wish
to proceed as follows.

(1) Suppose that [x] belongs to X/∼. Let U be a neighbourhood of [x] in X/∼ with
respect to OX/∼. Let

X X/∼π

be the quotient map. By Remark 6.1.9, we have that π is continuous. Thus, observe
that π−1(U) belongs to OX .

(2) Let Oπ−1(U) be the subspace topology on π−1(U) with respect to (X,OX). By
Corolllary E12.3.4, observe that

Γx(
π−1(U),Oπ−1(U)

)
is a neighbourhood of x in X with respect OX , and is a connected subset of X with
respect to OX .
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(3) Since

Γx(
π−1(U),Oπ−1(U)

)
is a connected subset of X with respect to OX , deduce, by Task E10.3.2, that

π

(
Γx(

π−1(U),Oπ−1(U)

))
is a connected subset of X/∼ with respect to OX/∼.

(4) LetOU be the subspace topology on U with respect to
(
X/∼,OX/∼

)
. By definition

of Γ
[x]
(U,OU ), deduce that

π

(
Γx(

π−1(U),Oπ−1(U)

))
is a subset of Γ

[x]
(U,OU ).

(5) Deduce that

π−1

(
π

(
Γx(

π−1(U),Oπ−1(U)

)))
is a subset of π−1

(
Γ

[x]
(U,OU )

)
.

(6) We have that

Γx(
π−1(U),Oπ−1(U)

)
is a subset of

π−1

(
π

(
Γx(

π−1(U),Oπ−1(U)

))) .
Deduce that

Γx(
π−1(U),Oπ−1(U)

)
is a subset of

π−1
(

Γ
[x]
(U,OU )

)
.

(7) As observed in (2), we have that

Γx(
π−1(U),Oπ−1(U)

)
is a neighbourhood of x in X with respect to OX . By Task E8.3.1, deduce that

π−1
(

Γ
[x]
(U,OU )

)
belongs to OX . Thus Γ

[x]
(U,OU ) belongs to OX/∼.
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(8) By Task E12.3.3, conclude that
(
X/∼,OX/∼

)
is locally connected.

Task E12.3.11. Let ON be the discrete topology on N. Let (X,OX) be the topological
space of Task E12.1.6. Let

N X
f

be the map given by

n 7→

{
0 if n = 1,

1
n−1 if n > 1.

Prove that f is a continuous surjection. You may wish to appeal to Task E5.1.14.

Task E12.3.12. Let O]0,1] be the subspace topology on ]0, 1] with respect to (R,OR).

0 1

] ]

Let (X,OX) be the Warsaw circle. Construct a continuous surjection

]0, 1] X.

You may wish to appeal to (2) of Task E5.3.23.

Remark E12.3.13. Let ON be the discrete topology on N. By Task E12.1.5, we have
that N is locally connected. By Task E12.1.6, the topological space (X,OX) of Task
E12.3.11 is not locally connected. Thus Task E12.3.11 demonstrates that an analogue
of Proposition 10.5.1 does not hold for locally connected topological spaces. It is for
this reason that the proof needed for Task E12.3.10 is more involved than the proof of
Corollary 10.5.3.

Let O]0,1] be the subspace topology on ]0, 1] with respect to (R,OR). By Task E12.3.9,
we have that

(
]0, 1] ,O]0,1]

)
is locally connected. By Task E12.2.9, the Warsaw circle

is not locally connected. Thus Task E12.3.12 gives a a second demonstration that an
analogue of Proposition 10.5.1 does not hold for locally connected topological spaces.
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13.1. Hausdorff topological spaces

Definition 13.1.1. A topological space (X,OX) is Hausdorff if, for all x0 and x1 which
belong to X such that x0 6= x1, there is a neighbourhood U0 of x0 in X with respect to
OX , and a neighbourhood U1 of x1 in X with respect to OX , such that U0∩U1 is empty.

x0

x1

X

U0

U1

13.2. Examples and non-examples of Hausdorff topological
spaces

Example 13.2.1. Suppose that x0 and x1 belong to R, and that x0 6= x1. Relabelling
x0 and x1 if necessary, we may assume that x0 < x1.

x0 x1

Lety be a real number such that x0 < y < x1. The following hold.

(1) We have that x0 belongs to ]−∞, y[.

(2) We have that x1 belongs to ]y,∞[.

(3) We have that ]−∞, y[ ∩ ]y,∞[ is empty.
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x0 x1y

[

]

Both ]−∞, y[ and ]y,∞[ belong to OR. To verify this is the topic of Task E13.2.1. We
conclude that (R,OR) is Hausdorff.

Example 13.2.2. Let X be a set. Let Oindisc
X be the indiscrete topology on X. Suppose

that x0 and x1 belong to X, and that x0 6= x1. The only neighbourhood of x0 in X with
respect to Oindisc

X is X, and x1 belongs to X. Thus there is no neighbourhood of x0 in
X with respect to Oindisc

X which does not contain x1. In particular, (X,Oindisc
X ) is not

Hausdorff.

Example 13.2.3. Let X be a set. Let Odisc
X be the discrete topology on X. Suppose

that x0 and x1 belong to X, and that x0 6= x1. The following hold.

(1) We have that {x0} belongs to Odisc
X .

(2) We have that {x1} belongs to Odisc
X .

(3) We have that {x0} ∩ {x1} is empty.

We conclude that (X,Odisc
X ) is Hausdorff.

Example 13.2.4. Let X be the set {a, b, c}. Let OX be the topology on X given by

{∅, {a}, {a, b}, {a, c}X} .

Every neighbourhood of b in X with respect to OX also contains c. Thus (X,OX) is not
Hausdorff.

Example 13.2.5. Let X be the set {a, b, c}. Let OX be the topology on X given by

{∅, {a}, {c}, {a, b}, {a, c}, X} .

Every neighbourhood of b in X with respect to OX also contains a. Thus (X,OX) is
not Hausdorff.

Remark 13.2.6. Let (X,OX) be a topological space. Suppose that X is finite, or more
generally that OX is finite. Then (X,OX) is Hausdorff if and only if OX is the discrete
topology. This is Corollary E13.3.7.

Example 13.2.7. Let O be the topology on R2 given by

{U × R | U belongs to OR} .

To verify that O defines a topology is Task E13.2.2. Suppose that x0 and x1 belong to
R, and that x0 6= x1. Let W be a neighbourhood of (0, x0) in X with respect to O.
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By definition of O, there is a neighbourhood U of 0 in R with respect to OR such that
W = U × R. By definition of OR, there is an open interval ]a, b[ with a < 0 < b such
that ]a, b[ is a subset of U . Thus ]a, b[× R is a subset of W .

0a b

We have that (0, x1) belongs to ]a, b[× R. Thus (0, x1) belongs to W .

We have demonstrated that every neighbourhood of (0, x0) in R2 with respect to O
contains (0, x1). We conclude that (R2,O) is not Hausdorff.

13.3. Canonical methods to prove that a topological space is
Hausdorff

Proposition 13.3.1. Let (X,OX) be a Hausdorff topological space. Let A be a subset
of X. Let OA be the subspace topology on A with respect to (X,OX). Then (A,OA) is
Hausdorff.

Proof. Suppose that a0 and a1 belong to A, and that a0 6= a1. Since (X,OX) is Haus-
dorff, there is a neighbourhood U0 of a0 in X with respect to OX , and a neighbourhood
U1 of a1 in X with respect to OX , such that U0 ∩ U1 is empty. The following hold.

(1) By definition of OA, we have that A ∩ U0 belongs to OA. Thus A ∩ U0 is a
neighbourhood of a0 in A with respect to OA.

(2) By definition of OA, we have that A ∩ U1 belongs to OA. Thus A ∩ U1 is a
neighbourhood of a1 in A with respect to OA.
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(3) We have that (A ∩ U0) ∩ (A ∩ U1) is a subset of U0 ∩ U1. Since U0 ∩ U1 is empty,
we deduce that (A ∩ U0) ∩ (A ∩ U1) is empty.

We conclude that (A,OA) is Hausdorff.

Example 13.3.2. By Example 13.2.1, we have that (R,OR) is Hausdorff. By Proposi-
tion 13.3.1, we deduce that (I,OI) is Hausdorff.

Proposition 13.3.3. Let (X,OX) and (Y,OY ) be Hausdorff topological spaces. Then
(X × Y,OX×Y ) is Hausdorff.

Proof. Suppose that (x0, y0) and (x1, y1) belong to X × Y , and that (x0, y0) 6= (x1, y1).
Then either x0 6= x1 or y0 6= y1, or both x0 6= x1 and y0 6= y1.

Suppose that x0 6= x1. Since (X,OX) is Hausdorff, there is a neighbourhood UX0 of
x0 in X with respect to OX , and a neighbourhood UX1 of x1 in X with respect to OX ,
such that UX0 ∩ UX1 is empty. The following hold.

(1) We have that UX0 × Y belongs to OX×Y . Thus UX0 × Y is a neighbourhood of
(x0, y0) in X × Y with respect to OX×Y .

(2) We have that UX1 × Y belongs to OX×Y . Thus UX1 × Y is a neighbourhood of
(x1, y1) in X × Y with respect to OX×Y .

(3) We have that (UX0 × Y )∩ (UX1 × Y ) = (UX0 ∩UX1 )× Y . Since UX0 ∩UX1 is empty,
we deduce that (UX0 × Y ) ∩ (UX1 × Y ) is empty.

Suppose instead that y0 6= y1. By an analogous argument, there is a neighbourhood UY0
of y0 in Y with respect to OY , and a neighbourhood UY1 of y1 in Y with respect to OY ,
such that the following hold.

(1 bis) We have that X ×UY0 is a neighbourhood of (x0, y0) in X ×Y with respect to
OX×Y .

(2 bis) We have that X ×UY1 is a neighbourhood of (x1, y1) in X ×Y with respect to
OX×Y .

(3 bis) We have that (X × UY0 ) ∩ (X × UY1 ) is empty.

We conclude that (X × Y,OX×Y ) is Hausdorff.

Example 13.3.4. By Example 13.2.1, we have that (R,OR) is Hausdorff. By Proposi-
tion 13.3.3, we deduce that (Rn,ORn) is Hausdorff, for any n ≥ 1.

Example 13.3.5. By Example 13.3.2, we have that (I,OI) is Hausdorff. By Proposition
13.3.3, we deduce that (I2,OI2) is Hausdorff.

Alternatively, by Example 13.3.4 we have that (R2,OR2) is Hausdorff. We can deduce
from this that (I2,OI2) is Hausdorff by Proposition 13.3.1.
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Example 13.3.6. By Example 13.3.4 we have that (R2,OR2) is Hausdorff. By Propo-
sition 13.3.1, we deduce that (S1,OS1) is Hausdorff.

Proposition 13.3.7. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that
(X,OX) is Hausdorff. Let

X Y
f

be a bijection. Suppose that f is open, in the sense of Definition E7.1.15. Then (Y,OY )
is Hausdorff.

Proof. Since f is a bijection, there is a map

Y X
g

such that g ◦ f = idX and f ◦ g = idY . Suppose that y0 and y1 belong to Y , and that
y0 6= y1. Since y0 6= y1, we have that g(y0) 6= g(y1). To check that you understand this
is the topic of Task E13.2.3 (1).

Since (X,OX) is Hausdorff, there is a neighbourhood U0 of g(y0) in X with respect
to OX , and a neighbourhood U1 of g(y1) in X with respect to OX , such that U0 ∩ U1 is
empty. The following hold.

(1) Since U0 ∩U1 is empty, we have that f(U0)∩ f(U1) is empty. To verify this is the
topic of Task E13.2.3 (2).

(2) Since f is open, we have that f(U0) belongs to OY . Since f ◦ g = idY , we have
that f (g(y0)) = y0. Thus we have that f(U0) is a neighbourhood of y0 in Y with
respect to OY .

(3) Since f is open, we have that f(U1) belongs to OY . Since f ◦ g = idY , we have
that f (g(y1)) = y1. Thus we have that f(U1) is a neighbourhood of y1 in Y with
respect to OY .

We conclude that (Y,OY ) is Hausdorff.

Corollary 13.3.8. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that
(X,OX) is Hausdorff. Suppose that (X,OX) and (Y,OY ) are homeomorphic. Then
(Y,OY ) is Hausdorff.

Proof. Follows immediately from Proposition 13.3.7 since, by Task E7.3.1, a homeomor-
phism is in particular bijective and open.

Example 13.3.9. By Example 13.3.5, we have that (I2,OI2) is Hausdorff. By Task
E7.2.9, there is a homeomorphism

I2 D2.
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By Corollary 13.3.8, we deduce that (D2,OD2) is Hausdorff.

Alternatively, by Example 13.3.4 we have that (R2,OR2) is Hausdorff. We can thus
deduce from Proposition 13.3.1 that (D2,OD2) is Hausdorff.

13.4. Example of a quotient of a Hausdorff topological space
which is not Hausdorff

Example 13.4.1. Let X be the subset of R2 given by the union of R×{0} and R×{1}.

R× {1}

R× {0}

Let OX be the subspace topology on X with respect to (R2,OR2). By Example 13.3.4,
we have that (R2,OR2) is Hausdorff. By Proposition 13.3.1, we deduce that (X,OX) is
Hausdorff.

Let ∼ be the equivalence relation on X generated by (x, 0) ∼ (x, 1), for all x ∈ R such
that x 6= 0.

R× {1}

R× {0}

(0, 1)

(0, 0)

We shall demonstrate that (X/∼,OX/∼) is not Hausdorff. Let

X X/∼π

be the quotient map. Let U0 be a neighbourhood of π ((0, 0)) in X/∼ with respect to
OX/∼. Let U1 be a neighbourhood of π ((0, 1)) in X/∼ with respect to OX/∼.

By definition of OX/∼, we have that π−1(U0) belongs to OX . By definition of OX
and OR2 , we deduce that there is an open interval ]a0, b0[, with a0 < 0 < b0, such that
]a0, b0[ × {0} is a subset of π−1(U0). To check that you understand this is the topic of
Task E13.2.4.
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R× {1}

R× {0}

(0, 1)

(0, 1)

] [

(a0, 0) (b0, 0)

By an analogous argument, there is an open interval ]a1, b1[, with a1 < 0 < b1, such that
]a1, b1[× {1} is a subset of π−1(U1).

R× {1}

R× {0}

(0, 1)

(0, 1)

] [

(a1, 1) (b1, 1)

The following hold.

(1) We have that ]max{a0, a1},min{b0, b1}[× {0} is a subset of π−1(U0).

(2) We have that ]max{a0, a1},min{b0, b1}[× {1} is a subset of π−1(U1).

R× {1}

R× {0}

(0, 1)

(0, 1)

] [

(max{a0, a1}, 1) (min{b0, b1}, 1)

] [

(max{a0, a1}, 0) (min{b0, b1}, 0)

We deduce that

π ((]max(a0, a1),min(b0, b1)[ \ {0})× {0})

is a subset of both U0 and U1. In particular, U0 ∩ U1 is not empty. We conclude that
(X/∼,OX/∼) is not Hausdorff.

Remark 13.4.2. The topological space (X/∼,OX/∼) is sometimes known as the real
line with two origins.
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Remark 13.4.3. Example 13.4.1 demonstrates that a quotient of a Hausdorff topolog-
ical space is not necessarily Hausdorff. Thus we do not yet have a ‘canonical method’
to prove that (M2,OM2), (K2,OK2), and our other examples of quotients of topological
spaces, are Hausdorff.

We shall see later that if (X,OX) and ∼ satisfy certain conditions, then (X/∼,OX/∼)
can be proven by a ‘canonical method’ to be Hausdorff.

Remark 13.4.4. We can intuitively believe that a quotient of a Hausdorff topological
space might not be Hausdorff. In a Hausdorff topological space, every two points can be
‘separated’ by subsets belonging to the topology: the points are ‘not too close together’.

When we take a quotient, however, we may identify many points. Thus points which
were not ‘close together’ before taking the quotient may be ‘close together’ afterwards.
So much so that we may no longer be able to ‘separate’ every two points.
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E13. Exercises for Lecture 13

E13.1. Exam questions

Task E13.1.1. Let X = {a, b, c, d} be a set with four elements. Let OX be the topology
on X given by

{∅, {a}, {c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, X} .

Demonstrate that (X,OX) is not Hausdorff.

Task E13.1.2. Prove that the Sorgenfrey line of Task E11.1.12 is Hausdorff.

Task E13.1.3. Let O be the topology on I2 given by the set of subsets U of I2 such
that, for every x which belongs to U , we have either that x = 0, or else that one of the
following holds.

(1) We have that x belongs to [0, y[× [0, y[ for some 0 < y < 1
2 , and this set is a subset

of U .

(2) We have that x belongs to [0, y[× ]1− y, 1] for some 0 < y < 1
2 , and this set is a

subset of U .

(3) We have that x belongs to ]1− y, 1]× [0, y[ for some 0 < y < 1
2 , and this set is a

subset of U .
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(4) We have that x belongs to ]1− y, 1] × ]1− y, 1] for some 0 < y < 1
2 , and this set

is a subset of U .

Is (I2,O) homeomorphic to (I2,OI2)?

Task E13.1.4. Prove that (T 2,OT 2) is Hausdorff.

Remark E13.1.1. The intention in Task E13.1.4 is for you to give a proof from first
principles. In a later lecture, we shall see how to prove that (T 2,OT 2) is Hausdorff by a
‘canonical method’.

It is also possible to give a proof by appealing to Corollary 13.3.8 and the fact, dis-
cussed in Example 8.1.4, that (T 2,OT 2) is homeomorphic to (S1 × S1,OS1×S1). Since
(S1,OS1) is Hausdorff by Example 13.3.6, we have that (S1 × S1,OS1×S1) is Hausdorff
by Proposition 13.3.3.

E13.2. In the lecture notes

Task E13.2.1. Suppose that x belongs to R. Prove that ]−∞, x[ and ]x,∞[ belong to
OR.

Task E13.2.2. Prove that the set O of Example 13.2.7 defines a topology on R2.

Task E13.2.3. Let X and Y be sets, and let

X Y
f
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be a bijection. Thus there is a map

Y X
g

such that g ◦ f = idX and f ◦ g = idY .

(1) Suppose that y0 and y1 belong to Y , and that y0 6= y1. Prove that g(y0) 6= g(y1).
You may wish to appeal to the fact that f ◦ g = idY .

(2) Suppose that U0 and U1 are subsets of X, and that U0 ∩ U1 is empty. Prove that
f(U0) ∩ f(U1) is empty. You may wish to appeal to the fact that g ◦ f = idX .

Task E13.2.4. In the notation of Example 13.4.1, prove that, for any neighbourhood U
of π ((0, 0)) in X/∼ with respect to OX/∼, there is an open interval ]a, b[ with a < 0 < b
such that ]a, b[× {0} is a subset of π−1(U).

E13.3. For a deeper understanding

Task E13.3.1. Let (X,OX) be a Hausdorff topological space. Let O′X be a topology
on X such that OX is a subset of O′X . Prove that (X,O′X) is Hausdorff.

Definition E13.3.2. A topological space (X,OX) is T1 if, for every ordered pair (x0, x1)
such that x0 and x1 belong to X and x0 6= x1, there is a neighbourhood of x0 in X with
respect to OX which does not contain x1.

x0

x1

X

Remark E13.3.3. . Suppose that (X,OX) is a Hausdorff topological space. Then
(X,OX) is a T1 topological space.

Task E13.3.4. Let (X,OX) be a topological space. Suppose that x belongs to X. Prove
that {x} is closed in X with respect to OX if and only if (X,OX) is a T1 topological
space. You may wish to proceed as follows.
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(1) Suppose that (X,OX) is a T1 topological space. Suppose that y belongs to X,
and that x 6= y. Since (X,OX) is a T1 topological space, there is a neighbourhood
Uy of y in X with respect to OX such that x does not belong to Uy. Deduce that y
is not a limit point of {x} in X with respect to OX .

(2) By Proposition 9.1.1, deduce from (1) that {x} is closed in X with respect to OX ..

(3) Suppose instead that {x} is closed in X with respect to OX for every x which
belongs to X. Suppose that x0 and x1 belong to X, and that x0 6= x1. Since {x0}
is closed in X with respect to OX , observe have that X \ {x1} belongs to OX .

(4) Moreover, observe that x0 belongs to X \ {x1}. Conclude that (X,OX) is T1.

Corollary E13.3.5. Let (X,OX) be a Hausdorff topological space. Suppose that x
belongs to X. Then {x} is closed in X with respect to OX .

Proof. Follows immediately from Task E13.3.4 and Remark E13.3.3.

Task E13.3.6. Let (X,OX) be a T1 topological space. Suppose that OX is finite. Prove
that OX is the discrete topology on X. You may wish to proceed as follows.

(1) Suppose that x belongs to X. Since (X,OX) is T1, there is, for every y which
belongs to X such that x 6= y, a neighbourhood Uy of x in X with respect to OX
such that y does not belong to Uy. Observe that⋂

y∈Y \{x}

Uy

is {x}.

(2) Since OX is finite, observe that ⋂
y∈Y \{x}

Uy

belongs to OX .

(3) Deduce that {x} belongs to OX . Conclude that OX is the discrete topology on
X.

Corollary E13.3.7. Let (X,OX) be a Hausdorff topological space. Suppose that OX
is finite. Then OX is the discrete topology on X.

Proof. Follows immediately from Task E13.3.6 and Remark E13.3.3.

Task E13.3.8. Let (X/∼,OX/∼) be the real line with two origins of Example 13.4.1.
Prove that (X/∼,OX/∼) is T1. You may wish to appeal to the fact that for any open
interval ]a, b[ such that a < 0 < b, we have that π (]a, b[× {0}) belongs to OX/∼, but
does not contain π ((0, 1)).

Remark E13.3.9. Example 13.4.1 and Task E13.3.8 demonstrate that a T1 topological
space is not necessarily Hausdorff.
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E13.4. Exploration — Hausdorffness for metric spaces

Definition E13.4.1. Let X be a set. A metric d on X is separating if, for any x0 and
x1 which belong to X with the property that d(x0, x1) = 0, we have that x0 = x1.

Definition E13.4.2. A metric space (X, d) is separated if d is separating.

Task E13.4.3. Let (X, d) be a separated, symmetric metric space. Let Od be the
topology on X corresponding to d of Task E3.4.9. Prove that (X,Od) is Hausdorff. You
may wish to proceed as follows.

(1) Suppose that x0 and x1 belong to X, and that x0 6= x1. Since (X, d) is separated,
deduce that d(x0, x1) > 0.

(2) Let ε = d(x0,x1)
2 . Appealing to Task E4.3.2, observe that Bε(x0) is a neighbourhood

of x0 in X with respect to Od, and that Bε(x1) is a neighbourhood of x1 in X with
respect to Od-

(3) Suppose that y belongs to Bε(x0). By definition of d, we have that

d(x0, x1) ≤ d(x0, y) + d(y, x1)

< d(x0,x1)
2 + d(y, x1).

Thus we have that
d(y, x1) > d(x0,x1)

2 .

Since (X, d) is symmetric, deduce that

d(x1, y) > d(x0,x1)
2 .

(4) Deduce from (3) that y does not belong to Bε(x1), and thus that Bε(x0)∩Bε(x1)
is empty.

(5) Conclude from (2) and (4) that (X, d) is Hausdorff.

x0

x1

ε

ε
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Definition E13.4.4. A topological space (X,OX) is perfectly normal if, for every or-
dered pair of subsets A0 and A1 of subsets of X which are closed in X with respect to
OX , which have the property that A0 ∩ A1 is empty, and which are both not empty,
there is a continuous map

X I
f

such that f−1 ({0}) = A0 and f−1 ({1}) = A1.

Task E13.4.5. Let (X,OX) be a perfectly normal topological space. Prove that (X,OX)
is Hausdorff. You may wish to appeal to Corollary E13.3.5.

Task E13.4.6. Let (X, d) be a separated, symmetric metric space. Let Od be the
topology on X corresponding to d of Task E3.4.9. Prove that (X,Od) is perfectly normal.
You may wish to proceed as follows.

(1) Since A0 ∩ A1 is empty, deduce, by Task E9.4.2, that d(x,A0) + d(x,A1) > 0 for
every x which belongs to X.

(2) Since (X, d) is symmetric, we have by Task E4.3.8 that the map

X R
d(−, A0)

given by x 7→ d(x,A0) is continuous, and that the map

X R
d(−, A1)

given by x 7→ d(x,A1) is continuous. By (1), Task E5.3.6, Task E5.3.10, and Task
E5.1.9, deduce that the map

X I
f

given by x 7→ d(x,A0)
d(x,A0)+d(x,A1) is continuous.

(3) By Remark E4.3.1 and Task E9.4.2, observe that f−1 ({0}) = A0, and that
f−1 ({1}) = A1.

(4) Conclude from (2) and (3) that (X, d) is perfectly normal.

Remark E13.4.1. Task E13.4.6 and Task E13.4.5 give a second proof that the topo-
logical space arising from every metric space is Hausdorff.

292



14. Tuesday 18th February

14.1. Characterisation of Hausdorff topological spaces

Notation 14.1.1. Let X be a set. We denote the subset

{(x, x) ∈ X ×X | x ∈ X}

of X ×X by ∆(X).

Example 14.1.2. Let X be R. Then ∆(X) is the line in R2 defined by y = x.

Proposition 14.1.3. A topological space (X,OX) is Hausdorff if and only if ∆(X) is
closed in X ×X with respect to OX×X .

Proof. We consider the following assertions.

(1) We have that ∆(X) is closed in X ×X with respect to OX×X .

(2) Every limit point of ∆(X) in X ×X with respect to OX×X belongs to ∆(X).

(3) For every (x0, x1) which belongs to X×X, there is a neighbourhood W of (x0, x1)
in X ×X with respect to OX×X such that W ∩∆(X) is empty.

(4) For every (x0, x1) which belongs to X ×X, there is a neighbourhood U0 of x0 in
X with respect to OX , and a neighbourhood U1 of x1 in X with respect to OX ,
such that (U0 × U1) ∩∆(X) is empty.
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(5) There is a neighbourhood U0 of x0 in X with respect to OX , and a neighbourhood
U1 of x1 in X with respect to OX , such that U0 ∩ U1 is empty.

By Proposition 9.1.1, we have that (1) holds if and only if (2) holds. By definition of a
limit point of ∆(X) in X ×X with respect to OX×X , we have that (2) holds if and only
if (3) holds. By Task E14.2.1, we have that (3) holds if and only if (4) holds. By Task
E14.2.2, we have that (4) holds if and only if (5) holds. We conclude that (1) holds if
and only if (5) holds, as required.

14.2. A necessary condition for a quotient of a Hausdorff
topological space to be Hausdorff

Remark 14.2.1. Let X be a set. As discussed in §A.4, a relation on X is formally a
subset R of X×X. When we write that x0 ∼ x1, we formally mean that (x0, x1) belongs
to R.

By extension, when we write that ∼ is a relation on X, this is shorthand for: we have
a subset R of X × X, and shall write x0 ∼ x1 when (x0, x1) belongs to R. When we
adopt this shorthand, we shall denote R by R∼. Tautologically, we thus have that

R∼ = {(x0, x1) ∈ X ×X | x0 ∼ x1} .

Proposition 14.2.2. Let (X,OX) be a Hausdorff topological space. Let ∼ be an equiv-
alence relation on X. Suppose that (X/∼,OX/∼) is a Hausdorff topological space. Then
R∼ is closed in X ×X with respect to OX×X .

Proof. Let

X X/∼π

be the quotient map. Let

X ×X (X/∼)× (X/∼)
π × π

be the map given by (x0, x1) 7→ (π(x0), π(x1)). By Remark 6.1.9 we have that π is
continuous. By Task E5.3.17, we deduce that π × π is continuous.

Since (X/∼,OX/∼) is a Hausdorff topological space, we have, by Proposition 14.1.3,
that ∆ (X/∼) is closed in (X/∼)× (X/∼) with respect to O(X/∼)×(X/∼). Since π × π is

continuous, we deduce, by Task E5.1.13, that (π × π)−1 (∆ (X/∼)) is closed in X ×X
with respect to OX×X .

We have that R∼ = (π × π)−1 (∆ (X/∼)). To verify this is the topic of Task E14.2.3.
We conclude that R∼ is closed in X ×X with respect to OX×X .

Example 14.2.3. Let X and ∼ be as in Example 13.4.1. Then R∼ is the union of the
following four sets.
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(1) ∆ ((R \ {0})× {0}).

(2) ∆ ((R \ {0})× {1}).

(3) ((R \ {0})× {0})× ((R \ {0})× {1}).

(4) ((R \ {0})× {1})× ((R \ {0})× {0}).

By Task E14.2.4. we have that ((0, 0), (0, 0)) is a limit point of R∼ in X × X with
respect to OX×X . Since ((0, 0), (0, 0)) does not belong to R∼, we deduce, by Proposition
9.1.1, that R∼ is not closed in X ×X with respect to OX×X . By Proposition 14.2.2, we
conclude that (X/∼,OX/∼) is not Hausdorff, as we demonstrated directly in Example
13.4.1.

Remark 14.2.4. In general, that R∼ is closed in X ×X with respect to OX×X is not
sufficient to ensure that (X/∼,OX/∼) is Hausdorff. An example is discussed in Task
E14.3.1 – Task E14.3.5.

14.3. Compact topological spaces

Definition 14.3.1. Let (X,OX) be a topological space. An open covering of X with
respect to OX is a set {Uj}j∈J of subsets of X such that the following hold.

(1) We have that Uj belongs to OX for every j which belongs to J .

(2) We have that X =
⋃
j∈J Uj .

Definition 14.3.2. Let (X,OX) be a topological space. Let U = {Uj}j∈J be an open
covering of X with respect to OX . Let K be a subset of J . Then {Uk}k∈K is a finite
subcovering of U if the following hld.

(1) We have that {Uk}k∈K is finite.

(2) We have that X =
⋃
k∈K Uk.

Definition 14.3.3. A topological space (X,OX) is compact if, for every open covering
U = {Uj}j∈J of X with respect to OX , there is a subset K of J such that {Uk}k∈K is a
finite subcovering of U .

Example 14.3.4. Let (X,OX) be a topological space. Suppose that OX is finite. Then
every set {Uj}j∈J such that Uj belongs to OX for all j which belong to J is finite. Thus
(X,OX) is compact.

Remark 14.3.5. In particular, if X is finite, then (X,OX) is compact.
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14.4. Examples of topological spaces which are not compact

Example 14.4.1. The set U = {]−n, n[}n∈N is an open covering of R with respect to
OR.

0

] [

] [

] [

−1−2−3 1 2 3

Let K be a subset of N such that {]−n, n[}n∈K is finite. This is the same as to say that
K is a finite subset of N. Then ⋃

n∈K
]−n, n[ = ]−m,m[ ,

where m = maxK. In particular, we do not have that⋃
n∈K

]−n, n[ = R.

Thus {]−n, n[}n∈K is not a finite subcovering of U .
This demonstrates that U does not admit a finite subcovering. We conclude that

(R,OR) is not compact.

Example 14.4.2. The set
U = {R× ]−n, n[}n∈N

is an open covering of R2 with respect to OR2 .

−1

1

−2

2
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Let K be a subset of N such that {R× ]−n, n[}n∈K is finite. This is the same as to say
that K is a finite subset of N. Then⋃

n∈K
(R× ]−n, n[) = R× ]−m,m[ ,

where m = maxK. In particular, we do not have that⋃
n∈K

(R× ]−n, n[) = R2.

Thus {R× ]−n, n[}n∈K is not a finite subcovering of U .
This demonstrates that U does not admit a finite subcovering. We conclude that

(R2,OR2) is not compact.

Example 14.4.3. The set

U = {]−n, n[× ]−n, n[}n∈N

is an open covering of R2 with respect to OR2 .

Let K be a subset of N such that {]−n, n[× ]−n, n[}n∈K is finite. This is the same as
to say that K is a finite subset of N. Then⋃

n∈K
(]−n, n[× ]−n, n[) = ]−.m,m[× ]−m,m[ ,

where m = maxK. In particular, we do not have that⋃
n∈K

(]−n, n[× ]−n, n[) = R2.

Thus {]−n, n[× ]−n, n[}n∈K is not a finite subcovering of U .
This demonstrates that U does not admit a finite subcovering. Thereby it gives a

second proof that (R2,OR2) is not compact.

Example 14.4.4. Suppose that a and b belong to R. Let O]a,b[ be the subspace topology
on ]a, b[ with respect to O]a,b[. The set

U =
{]
a+ 1

n , b−
1
n

[}
n ∈ N and 1

n
< b−a

2
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is an open covering of ]a, b[ with respect to O]a,b[.

] [

] [

] [

] [

] [

] [

] [

] [

] [

] [

b−a
2

a b

Let K be a subset of
{
n ∈ N | 1

n <
b−a

2

}
such that

{]
a+ 1

n , b−
1
n

[}
n∈K is finite. This is

the same as to say that K is a finite subset of
{
n ∈ N | 1

n <
b−a

2

}
. Then⋃

n∈K

]
a+ 1

n , b−
1
n

[
=
]
a+ 1

m , b−
1
m

[
,

where m = maxK. In particular, we do not have that⋃
n∈K

]
a+ 1

n , b−
1
n

[
= ]a, b[ .

Thus
{]
a+ 1

n , b−
1
n

[}
n∈K is not a finite subcovering of U .

This demonstrates that U does not admit a finite subcovering. We conclude that(
]a, b[ ,O]a,b[

)
is not compact.

Example 14.4.5. Let us think of S1 × ]0, 1[ as a cylinder with the two circles at its
ends removed.

The set {
S1 ×

]
1
n , 1−

1
n

[}
n ∈ N and n > 2

is an open covering of S1 × ]0, 1[ with respect to OS1×]0,1[.
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Let K be a subset of {n ∈ N | n > 2} such that
{
S1 ×

]
1
n , 1−

1
n

[}
n∈K is finite. This is

the same as to say that K is a finite subset of {n ∈ N | n > 2}. Then⋃
n∈K

(
S1 ×

]
1
n , 1−

1
n

[)
= S1 ×

]
1
m , 1−

1
m

[
,

where m = maxK. In particular, we do not have that⋃
n∈K

(
S1 ×

]
1
n , 1−

1
n

[)
= S1 × ]0, 1[ .

Thus
{
S1 ×

]
1
n , 1−

1
n

[}
n∈K is not a finite subcovering of U .

This demonstrates that U does not admit a finite subcovering. We conclude that(
S1 × ]0, 1[ ,OS1×]0,1[

)
is not compact.

Example 14.4.6. Let OD2\S1 be the subspace topology on D2 \ S1 with respect to
(D2,OD2).

Let Un be the subset of D2 \ S1 given by{
(x, y) ∈ R2 | ‖(x, y)‖ < 1− 1

n

}
.

The set U = {Un}n∈N is an open covering of D2 \ S1 with respect to OD2\S1 .

Let K be a subset of N such that {Un}n∈K is finite. This is the same as to say that K
is a finite subset of N. Then ⋃

n∈K
Un = Um,
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where m = maxK. In particular, we do not have that⋃
n∈K

Un = D2 \ S1.

Thus {Un}n∈K is not a finite subcovering of U .
This demonstrates that U does not admit a finite subcovering. We conclude that(
D2 \ S1,OD2\S1

)
is not compact.
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E14. Exercises for Lecture 14

E14.1. Exam questions

Task E14.1.1. Give a counterexample to the following assertion: the set{
(x, x) ∈ R2 | x ∈ X

}
is closed in R2 with respect to OR2 for every subset X of R. Give an example of a
topological property which can be imposed upon X to ensure that the assertion correct.
Justify your answer.

Task E14.1.2. Let O[0,1[ be the subspace topology on [0, 1[ with respect to (R,OR). Is(
[0, 1[ ,O[0,1[

)
compact?

0 1

[ [

Task E14.1.3. Find an open covering of I2 × R with respect to OI2×R which does not
admit a finite subcovering. Conclude that (I2 × R,OI2×R) is not compact.

Task E14.1.4. Let X be the ‘open annulus’ given by{
(x, y) ∈ R2 | 1

2 < ‖(x, y)‖ < 1
}
.

Let OX the subspace topology on X with respect to (R2,OR2). Give an example of
an open covering of (X,OX) which does not admit a finite subcovering. Deduce that
(X,OX) is not compact.
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Task E14.1.5. Let X be the union of [0, 1[ × [0, 3] and [0, 3] × [0, 1[. Let OX be the
subspace topology on X with respect to (R2,OR2).

Find an open covering of X which does not admit a finite subcovering. Conclude that
(X,OX) is not compact.

Task E14.1.6. Let X be the set given by I2 \
([

1
4 ,

3
4

]
×
[

1
4 ,

3
4

])
.

Let

I2 T 2
π

be the quotient map. Let Oπ(X) be the subspace topology on π(X) with respect to
(T 2,OT 2). Demonstrate that

(
π(X),Oπ(X)

)
is not compact.

Task E14.1.7. Prove that the Sorgenfrey line of Task E11.1.12 is not compact.

Task E14.1.8. Give an example of an equivalence relation∼ on R such that (R/∼,OR/∼)
is compact.

E14.2. In the lecture notes

Task E14.2.1. Let (X0,OX0) and (X1,OX1) be topological spaces. Let A be a subset of
X0×X1. Suppose that (x0, x1) belongs to X0×X1. Prove that the following assertions
are equivalent.

(1) There is a neighbourhood W of (x0, x1) in X×X with respect to OX×X such that
W ∩A is empty.

(2) There is a neighbourhood U0 of x0 in X with respect to OX , and a neighbourhood
U1 of x1 in X with respect to OX such that (U0 × U1) ∩A is empty.

302



E14.3. For a deeper understanding

Task E14.2.2. Let X0 and X1 be sets. Let A be a subset of X0 × X1. Let U0 be a
subset of X0, and let U1 be a subset of X1. Prove that (U0 × U1) ∩A = U0 ∩ U1.

Task E14.2.3. Let X be a set, and let ∼ be an equivalence relation on X. Let

X X/∼π

be the quotient map. Let

X ×X (X/∼)× (X/∼)
π × π

be the map given by (x0, x1) 7→ (π(x0), π(x1)). Prove that R∼ = (π × π)−1 (∆ (X/∼)).

Task E14.2.4. Let X and ∼ be as in Example 13.4.1. Prove that ((0, 0), (0, 0)) is a
limit point of R∼ in X ×X with respect to OX .

E14.3. For a deeper understanding

Task E14.3.1. Let Σ be the set given by{
1
n | n ∈ N

}
.

Let OK be the set of subsets U with the property that, for every x which belongs to U ,
there are real numbers a and b such that one of the following holds.

(1) We have that x belongs to ]a, b[, and that ]a, b[ is a subset of U .

(2) We have that x belongs to ]a, b[\(]a, b[ ∩ Σ), and that ]a, b[\(]a, b[ ∩ Σ) is a subset
of U .

Prove that OK defines a topology on R.

Terminology E14.3.2. The topology OK is known as the K-topology on R.

Task E14.3.3. Prove that (R,OK) is Hausdorff. You may wish to proceed as follows.

(1) Observe that OR is a subset of OK .

(2) Appeal to Example 13.2.1 and to Task E13.3.1.

Task E14.3.4. Let ∼ be the equivalence relation on R generated by 1 ∼ 1
n for every n

which belongs to N. Prove that (R/∼,OR/∼) is not Hausdorff. You may wish to proceed
as follows.
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(1) Let

R R/∼π

be the quotient map. Let U0 be a neighbourhood of π(0) in R/∼ with respect to
OR/∼. Let U1 be a neighbourhood of π(1) in R/∼ with respect to OR/∼. By Remark
6.1.9, we have that π is continuous. Deduce that π−1(U0) and π−1(U1) belong to
OR.

(2) Since π(1) belongs to U1, observe that, by definition of ∼, the set Σ is a subset of
π−1(U1).

(3) Suppose that n belongs to N. Since 1
n belongs to π−1(U1), and since π−1(U1)

belongs to OK , observe that, by definition of OK and the fact that 1
n belongs to Σ,

there are real numbers an and bn such that an <
1
n < bn, and such that ]an, bn[ is a

subset of π−1(U1).

(4) Since π−1(U0) belongs to OK , we have, by definition of OK , that there are real
numbers a and b such that one of the following holds.

(I) We have that 0 belongs to ]a, b[, and that ]a, b[ is a subset of π−1(U0).

(II) We have that 0 belongs to ]a, b[ \ (]a, b[ ∩ Σ), and that ]a, b[ \ (]a, b[ ∩ Σ) is a
subset of π−1(U0).

In either case, let n be a natural number such that 1
n < b. Let x be a real number

which does not belong to Σ, and which has the property that an < x < 1
n and that

0 < x. Observe that x belongs to both π−1 (U0) and to π−1 (U1).

(5) Deduce from (4) that π(x) belongs to both U0 and U1. In other words, U0 ∩U1 is
not empty.

(6) Conclude that (R/∼,OR/∼) is not Hausdorff.

Task E14.3.5. Let ∼ be the equivalence relation on R of Task E14.3.4. Let OK2
be the

product topology on R2 with respect to two copies of (R,OK). Prove that R∼ is closed
in R2 with respect to OK2

. You may wish to proceed as follows.

(1) Suppose that x is a limit point of Σ in R with respect to OK . By Task E8.3.10,
deduce that x is a limit point of Σ in R with respect to OR.

(2) Demonstrate that the only limit point of Σ in R with respect to OR is 0.

(3) Suppose that a and b belong to R, and that a < 0 < b. Observe ]a, b[ \ Σ is a
neighbourhood of 0 in R with respect to OK . Since Σ∩ (]a, b[ \ Σ) is empty, deduce
that 0 is not a limit point of Σ in R with respect to OK .

(4) Deduce from (1)–(3) that Σ is closed in R with respect to OK .
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E14.3. For a deeper understanding

(5) By Task E3.3.1, deduce from (4) that Σ×Σ is closed in R2 with respect to OK2
.

(6) Observe that R∼ is Σ× Σ.

(7) Conclude that R∼ is closed in R2 with respect to OK2
.

Task E14.3.6. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that either
(X,OX) or (Y,OY ) is not compact. Prove that (X × Y,OX×Y ) is not compact. You
may wish to glance back at Example 14.4.2 and Example 14.4.5.
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A. Set theoretic foundations

A.1. Set theoretic equalities and relations

Remark A.1.1. Throughout the course, we shall make use of various set theoretic
equalities and relations. Table A.1 and Table A.2 list many of these.

Remark A.1.2. Here is one more set theoretic identity which does not fit into Table
A.1! Given a set X, a set Y , a subset A of X, and a subset B of Y , we have that

(X × Y ) \ (A×B) = ((X \A)×B) ∪ (A× (Y \B)) ∪ ((X \A)× (Y \B)) .

A.2. Injections, surjections, and bijections

Definition A.2.1. Let X and Y be sets. A map

X Y
f

is an injection, or injective, if, for every x0 and x1 which belong to X such that f(x0) =
f(x1), we have that x0 = x1.

Proposition A.2.2. Let X, Y , and Z be sets. Let

X Y
f

and

Y Z
g

be injections. Then

X Z
g ◦ f

is an injection.

Proof. Suppose that x0 and x1 belong to X, and that g (f(x0)) = g (f(x1)). Since g is
injective, we deduce that f(x0) = f(x1). Since f is injective, we deduce that x0 = x1.
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Remark A.2.3. Let X be a set. Let A be a subset of X. Let

A X
i

be the inclusion map of Terminology 5.2.1. Then i is an injection.

Definition A.2.4. Let X and Y be sets. A map

X Y
f

is a surjection, or surjective, if, for every y which belongs to Y , there is an x which
belongs to X such that f(x) = y.

Proposition A.2.5. Let X and Y be sets. Suppose that there exists an injection

X Y,
f

and that there exists an injection

Y X.
g

Then there exists a bijection

X Y.

Proof. Let A1 be the subset X \ g(Y ) of X. For every n which belongs to N, let An be
the subset of Y given by g (f(An−1)).

Suppose that x belongs to X, and that x does not belong to A1. Then x belongs to
g(Y ). Since g is injective, we deduce that there is a unique yx ∈ Y such that g(yx) = x.

Let

X Y
f ′

be the map given by

x 7→

{
f(x) if x belongs to An for some n ∈ N,

yx otherwise.

We shall first prove that f ′ is injective. Suppose that x0 and x1 belong to X, and
that f ′(x0) = f ′(x1). Suppose that x1 does not belong to An for any n ∈ N. Then
f ′(x1) = yx1 . Suppose that x0 belongs to Am for some m ∈ N. Then f ′(x0) = f(x0).
We deduce that

x1 = g (yx1) = g
(
f ′(x1)

)
= g (f(x0)) .
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Thus x1 belongs to Am+1. This contradicts our assumption on x1. We deduce that x0

does not belong to Am for any m ∈ N. Thus f ′(x0) = yx0 . Then

x0 = g(yx0) = g
(
f ′(x0)

)
= g

(
f ′(x1)

)
= g(yx1) = x1.

An entirely analogous argument demonstrates that if x0 does not belong to An for any
n ∈ N, then x0 = x1.

Suppose now that there is an m ∈ N such that x0 belongs to An, and that there is an
n ∈ N such that x1 belongs to An, Then

f(x0) = f ′(x0) = f ′(x1) = f(x1).

Since f is injective, we deduce that x0 = x1. This completes our proof that f ′ is injective.

We shall now prove that f is surjective. Suppose that y belongs to Y . We have that
g(y) does not belong to A1. For every n ∈ N, suppose that y does not belong to f(An).
Then g(y) does not belong to An for every n ∈ N. Thus f ′ (g(y)) = y. Suppose instead
that there is an n ∈ N such that y belongs to f(An). Then there is an x ∈ An such that
f(x) = y. This completes our proof that f ′ is surjective.

We have demonstrated that f ′ is both injective and surjective. By Task E7.2.1, we
conclude that f ′ is bijective.

� Proposition A.2.5 does not assert that f and g are inverse to each other. Rather,
we used f and g to find a new map

X Y,

which we proved to be a bijection.

Remark A.2.6. Proposition A.2.5 is sometimes known as the Cantor-Bernstein-Schröder
theorem.

A.3. Coproducts

Notation A.3.1. Let J be a set. For every j which belongs to J , let Xj be a set. We
denote by

⊔
j∈J Xj the set

⋃
j∈J (Xj × {j}).

Remark A.3.2. Suppose that j0 and j1 belong to J . We allow that Xj0 = Xj1 .

Definition A.3.3. Let J be a set. For every j which belongs to J , let Xj be a set. We
refer to

⊔
j∈J Xj as a coproduct.

Notation A.3.4. Let J and X be sets. For every j which belongs to J , let Xj be X.
We often denote

⊔
j∈J Xj by

⊔
j∈J X.
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Notation A.3.5. When J is {0, 1}, we often denote
⊔
{0,1}Xj by X0tX1. In particular,

we often denote
⊔
j∈{0,1}X by X tX. When J is {0, 1, . . . , n}, we similarly often denote⊔

j∈{0,1,...,n}Xj by
X0 tX1 t . . . tXn︸ ︷︷ ︸

n

.

We sometimes also denote
⊔
j∈{0,1,...,n}Xj by

⊔
0≤j≤nXj .

� It is important to appreciate that X tX and X ∪X are very different! For X ∪X
is X, but X tX can be thought of as ‘two disjoint copies’ of X. Think of T 2.

One doughnut is very different from two doughnuts!

Proposition A.3.6. Let X be a set, and let X0 and X1 be subsets of X. Suppose that
X = X0∪X1. Moreover, suppose that this union is disjoint, in the sense of Terminology
9.5.1. Then there is a bijection between X and the coproduct of X0 and X1.

Proof. Let

(X0 × {0}) ∪ (X1 × {1}) X
f

be the map given by (x0, 0) 7→ x0 for every x0 which belongs to X0, and by (x1, 1) 7→ x1

for every x1 which belongs to X1. Let

X (X0 × {0}) ∪ (X1 × {1})
g

be the map given by

x 7→

{
(x, 0) if x0 belongs to X0,

(x, 1) if x1 belongs to X1.

The fact that X is the disjoint union of X0 and X1 exactly ensures that g is well defined.
We have that g ◦ f = id(X0×{0})∪(X1×{1}), and that f ◦ g = idX .

Remark A.3.7. Proposition A.3.6 justifies our use of the same notation for disjoint
unions and coproducts.
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A.4. Equivalence relations

Definition A.4.1. Let X be a set. A relation on X is a subset of X ×X.

Notation A.4.2. Let X be a set, and let R be a relation on X. Suppose that x0 belongs
to X, that x1 belongs to X, and that (x0, x1) belongs to R. We write x0 ∼ x1.

Definition A.4.3. Let X be a set. A relation R on X is an equivalence relation if the
following hold.

(1) For all x ∈ X, we have that x ∼ x.

(2) For all x0 ∈ X and x1 ∈ X, such that x0 ∼ x1, we have that x1 ∼ x0.

(3) For all x0 ∈ X, x1 ∈ X, and x2 ∈ X, such that x0 ∼ x1 and x1 ∼ x2, we have
that x0 ∼ x2.

Remark A.4.4. Axiom (1) is known as reflexivity. Axiom (2) is known as symmetry.
Axiom (3) is known as transitivity.

Example A.4.5. Let X = {a, b, c} be a set with three elements. We have the following.

(1) The relation R of X given by

{(a, b), (b, a)}

is not an equivalence relation. Symmetry and transitivity hold, but reflexivity does
not.

(2) The relation R of X given by

{(a, a), (b, b), (c, c), (b, c)}

is not an equivalence relation. Reflexivity and transitivity hold, but symmetry does
not, since (c, b) does not belong to R.

(3) The relation R of X given by

{(a, a), (b, b), (c, c), (a, c), (c, a), (b, c), (c, b)}

is not an equivalence relation. Reflexivity and symmetry hold, but transitivity does
not, since (a, c) and (c, b) belong to R, but (a, b) does not.

(4) The relation R of X given by

{(a, a), (b, b), (c, c)}

is an equivalence relation on R. It is the relation defined by equality.
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(5) The relation R of X given by

{(a, a), (b, b), (c, c), (a, c), (c, a)}

is an equivalence relation on R.

Notation A.4.6. Let X be a set, and let R be a relation on X. Let us consider the
following subsets of X ×X.

(1) Let ∆ be the subset of X ×X given by

{(x, x) ∈ X ×X | x ∈ X} .

(2) Let Rsym denote the set

{(x0, x1) ∈ X ×X | (x1, x0) ∈ R} .

(3) Let Requiv denote the set of (x, x′) ∈ X×X such that there are is an integer n ≥ 2
and an n-tuple (x1, . . . , xn) ∈ X × . . .×X with the following properties.

(a) We have that x = x1.

(b) We have that x′ = xn.

(c) For every 1 ≤ i ≤ n− 1, we have that (xi, xi+1) ∈ ∆ ∪R ∪Rsym.

Remark A.4.7. For any y, y′ ∈ X, we have that if (y, y′) ∈ ∆ ∪ R ∪ Rsym, then
(y′, y) ∈ ∆ ∪R ∪Rsym.

Proposition A.4.8. Let X be a set, and let R be a relation on X. Then Requiv defines
an equivalence relation on X.

Proof. We verify that the conditions of Definition A.4.3 hold.

(1) Let x ∈ X. Since (x, x) ∈ ∆, and hence (x, x) ∈ ∆ ∪ R ∪ Rsym. Thus the pair
(x, x) exhibits that (x, x) ∈ Requiv.

(2) Let (x, x′) ∈ Requiv. By definition of Requiv, there is an integer n ≥ 2, and an
n-tuple (x1, . . . , xn) ∈ X × . . .×X, with the following properties.

(a) We have that x = x1.

(b) We have that x′ = xn.

(c) For every 1 ≤ i ≤ n− 1, we have that (xi, xi+1) ∈ ∆ ∪R ∪Rsym.

By Remark A.4.7, we have, for every 1 ≤ n − 1, that (xi+1, xi) ∈ ∆ ∪ R ∪ Rsym.
Thus the n-tuple (xn, . . . , x1) exhibits that (x′, x) belongs to Requiv.

(3) Let (x, x′) ∈ Requiv, and let (x′, x′′) ∈ Requiv.

By definition of Requiv, there is an integer m ≥ 2, and an m-tuple (x1, . . . , xm) ∈
X × . . .×X, with the following properties.
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(a) We have that x = x1.

(b) We have that x′ = xn.

(c) For every 1 ≤ i ≤ m− 1, we have that (xi, xi+1) ∈ ∆ ∪R ∪Rsym.

In addition, there is an integer n ≥ 2, and an n-tuple (y1, . . . , yn) ∈ X × . . . ×X,
with the following properties.

(a) We have that x′ = y1.

(b) We have that x′′ = yn.

(c) For every 1 ≤ i ≤ n− 1, we have that (yi, yi+1) ∈ ∆ ∪R ∪Rsym.

The (m+n−1)-tuple (x1, . . . , xm−1, xm = y1, y2, . . . , yn) exhibits that (x, x′′) belongs
to Requiv.

Remark A.4.9. Let X be a set, and let R be a relation on X. It is straightforward to
prove that if R′ is a relation on X such that R ⊂ R′, then Requiv ⊂ R′. In other words,
Requiv is the smallest equivalence relation on X containing R.

Terminology A.4.10. Let X be a set, and let R be a relation on X. We refer to Requiv

as the equivalence relation generated by R.

Remark A.4.11. In practise, given R, we typically do not determine Requiv by working
directly with the definition given in Notation A.4.6. Rather we just ‘inductively throw
in by hand everything we need to obtain an equivalence relation, but nothing else’ !

Example A.4.12. Let X = {a, b, c} be a set with three elements. We have the following.

(1) Let R be the relation on X given by

{(a, b), (b, a)} .

Then Requiv is given by

{(a, a), (b, b), (c, c), (a, b), (b, a)} .

(2) Let R be the relation on X given by

{(a, a), (b, b), (c, c), (b, c)} .

Then Requiv is given by

{(a, a), (b, b), (c, c), (b, c), (c, b)} .

313



A. Set theoretic foundations

(3) Let R be the relation on X given by

{(a, a), (b, b), (c, c), (a, c), (c, a), (b, c), (c, b)} .

Then Requiv is given by

{(a, a), (b, b), (c, c), (a, c), (c, a), (b, c), (c, b), (a, b), (b, a)} .

In other words, Requiv is all of X ×X.

(4) Let R be the relation on X given by

{(b, b)} .

Then Requiv is given by
{(a, a), (b, b), (c, c)} .
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Equality Setting

X ∩
(⋃

i∈I Yi
)

=
⋃
i∈I (X ∩ Yi) A set X, and a (possibly infinite) set {Yi}i∈I

of sets.
X \

(⋃
i∈I Ai

)
=
⋂
i∈I (X \Ai) A set X, and a (possibly infinite) set {Ai}i∈I

of subsets of X.
X \

(⋂
i∈I Ai

)
=
⋃
i∈I (X \Ai) A set X, and a (possibly infinite) set {Ai}i∈I

of subsets of X.
f−1

(⋃
i∈I Ai

)
=
⋃
i∈I f

−1 (Ai) A map

X Y
f

of sets, and a (possibly infinite) set {Ai}i∈I of
subsets of Y .

f−1
(⋂

i∈I Ai
)

=
⋂
i∈I f

−1 (Ai) A map

X Y
f

of sets, and a (possibly infinite) set {Ai}i∈I of
subsets of Y .

f−1(Y \A) = X \ f−1(A) A map

X Y
f

of sets, and a subset A of Y .
f
(
f−1(A)

)
= A A surjective map

X Y
f

of sets, and a subset A of Y .

Table A.1.: Set theoretic equalities
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Relation Setting

f(A ∩B) ⊂ f(A) ∩ f(B) A map

X Y
f

of sets, a subset A of X, and a subset B of X.
f(A) ⊂ f(B) A map

X Y
f

of sets, and subsets A and B of X such that
A ⊂ B.

f−1(A) ⊂ f−1(B) A map

X Y
f

of sets, and subsets A and B of Y such that
A ⊂ B.

A ⊂ f−1 (f(A)) A map

X Y
f

of sets, and a subset A of X.
f
(
f−1(A)

)
⊂ A A map

X Y
f

of sets, and a subset A of Y .

Table A.2.: Set theoretic relations
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