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14 Tuesday 18th February

14.1 Characterisation of Hausdorff topological spaces

Notation 14.1.1. Let X be a set. We denote the subset

{(x, x) ∈ X ×X | x ∈ X}

of X ×X by ∆(X).

Example 14.1.2. Let X be R. Then ∆(X) is the line in R2 defined by y = x.

Proposition 14.1.3. A topological space (X,OX) is Hausdorff if and only if ∆(X) is
closed in X ×X with respect to OX×X .

Proof. We consider the following assertions.

(1) We have that ∆(X) is closed in X ×X with respect to OX×X .

(2) Every limit point of ∆(X) in X ×X with respect to OX×X belongs to ∆(X).

(3) For every (x0, x1) which belongs to X×X, there is a neighbourhood W of (x0, x1)
in X ×X with respect to OX×X such that W ∩∆(X) is empty.

(4) For every (x0, x1) which belongs to X ×X, there is a neighbourhood U0 of x0 in
X with respect to OX , and a neighbourhood U1 of x1 in X with respect to OX ,
such that (U0 × U1) ∩∆(X) is empty.
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(5) There is a neighbourhood U0 of x0 in X with respect to OX , and a neighbourhood
U1 of x1 in X with respect to OX , such that U0 ∩ U1 is empty.

By Proposition 9.1.1, we have that (1) holds if and only if (2) holds. By definition of a
limit point of ∆(X) in X ×X with respect to OX×X , we have that (2) holds if and only
if (3) holds. By Task E14.2.1, we have that (3) holds if and only if (4) holds. By Task
E14.2.2, we have that (4) holds if and only if (5) holds. We conclude that (1) holds if
and only if (5) holds, as required.

14.2 A necessary condition for a quotient of a Hausdorff
topological space to be Hausdorff

Remark 14.2.1. Let X be a set. As discussed in §A.4, a relation on X is formally a
subset R of X×X. When we write that x0 ∼ x1, we formally mean that (x0, x1) belongs
to R.

By extension, when we write that ∼ is a relation on X, this is shorthand for: we have
a subset R of X × X, and shall write x0 ∼ x1 when (x0, x1) belongs to R. When we
adopt this shorthand, we shall denote R by R∼. Tautologically, we thus have that

R∼ = {(x0, x1) ∈ X ×X | x0 ∼ x1} .

Proposition 14.2.2. Let (X,OX) be a Hausdorff topological space. Let ∼ be an equiv-
alence relation on X. Suppose that (X/∼,OX/∼) is a Hausdorff topological space. Then
R∼ is closed in X ×X with respect to OX×X .

Proof. Let

X X/∼π

be the quotient map. Let

X ×X (X/∼)× (X/∼)
π × π

be the map given by (x0, x1) 7→ (π(x0), π(x1)). By Remark 6.1.9 we have that π is
continuous. By Task E5.3.17, we deduce that π × π is continuous.

Since (X/∼,OX/∼) is a Hausdorff topological space, we have, by Proposition 14.1.3,
that ∆ (X/∼) is closed in (X/∼)× (X/∼) with respect to O(X/∼)×(X/∼). Since π × π is

continuous, we deduce, by Task E5.1.13, that (π × π)−1 (∆ (X/∼)) is closed in X ×X
with respect to OX×X .

We have that R∼ = (π × π)−1 (∆ (X/∼)). To verify this is the topic of Task E14.2.3.
We conclude that R∼ is closed in X ×X with respect to OX×X .

Example 14.2.3. Let X and ∼ be as in Example 13.4.1. Then R∼ is the union of the
following four sets.
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14.3 Compact topological spaces

(1) ∆ ((R \ {0})× {0}).

(2) ∆ ((R \ {0})× {1}).

(3) ((R \ {0})× {0})× ((R \ {0})× {1}).

(4) ((R \ {0})× {1})× ((R \ {0})× {0}).

By Task E14.2.4. we have that ((0, 0), (0, 0)) is a limit point of R∼ in X × X with
respect to OX×X . Since ((0, 0), (0, 0)) does not belong to R∼, we deduce, by Proposition
9.1.1, that R∼ is not closed in X ×X with respect to OX×X . By Proposition 14.2.2, we
conclude that (X/∼,OX/∼) is not Hausdorff, as we demonstrated directly in Example
13.4.1.

Remark 14.2.4. In general, that R∼ is closed in X ×X with respect to OX×X is not
sufficient to ensure that (X/∼,OX/∼) is Hausdorff. An example is discussed in Task
E14.3.1 – Task E14.3.5.

14.3 Compact topological spaces

Definition 14.3.1. Let (X,OX) be a topological space. An open covering of X with
respect to OX is a set {Uj}j∈J of subsets of X such that the following hold.

(1) We have that Uj belongs to OX for every j which belongs to J .

(2) We have that X =
⋃
j∈J Uj .

Definition 14.3.2. Let (X,OX) be a topological space. Let U = {Uj}j∈J be an open
covering of X with respect to OX . Let K be a subset of J . Then {Uk}k∈K is a finite
subcovering of U if the following hld.

(1) We have that {Uk}k∈K is finite.

(2) We have that X =
⋃
k∈K Uk.

Definition 14.3.3. A topological space (X,OX) is compact if, for every open covering
U = {Uj}j∈J of X with respect to OX , there is a subset K of J such that {Uk}k∈K is a
finite subcovering of U .

Example 14.3.4. Let (X,OX) be a topological space. Suppose that OX is finite. Then
every set {Uj}j∈J such that Uj belongs to OX for all j which belong to J is finite. Thus
(X,OX) is compact.

Remark 14.3.5. In particular, if X is finite, then (X,OX) is compact.
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14.4 Examples of topological spaces which are not compact

Example 14.4.1. The set U = {]−n, n[}n∈N is an open covering of R with respect to
OR.

0

] [

] [

] [

−1−2−3 1 2 3

Let K be a subset of N such that {]−n, n[}n∈K is finite. This is the same as to say that
K is a finite subset of N. Then ⋃

n∈K
]−n, n[ = ]−m,m[ ,

where m = maxK. In particular, we do not have that⋃
n∈K

]−n, n[ = R.

Thus {]−n, n[}n∈K is not a finite subcovering of U .
This demonstrates that U does not admit a finite subcovering. We conclude that

(R,OR) is not compact.

Example 14.4.2. The set
U = {R× ]−n, n[}n∈N

is an open covering of R2 with respect to OR2 .

−1

1

−2

2
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14.4 Examples of topological spaces which are not compact

Let K be a subset of N such that {R× ]−n, n[}n∈K is finite. This is the same as to say
that K is a finite subset of N. Then⋃

n∈K
(R× ]−n, n[) = R× ]−m,m[ ,

where m = maxK. In particular, we do not have that⋃
n∈K

(R× ]−n, n[) = R2.

Thus {R× ]−n, n[}n∈K is not a finite subcovering of U .
This demonstrates that U does not admit a finite subcovering. We conclude that

(R2,OR2) is not compact.

Example 14.4.3. The set

U = {]−n, n[× ]−n, n[}n∈N

is an open covering of R2 with respect to OR2 .

Let K be a subset of N such that {]−n, n[× ]−n, n[}n∈K is finite. This is the same as
to say that K is a finite subset of N. Then⋃

n∈K
(]−n, n[× ]−n, n[) = ]−.m,m[× ]−m,m[ ,

where m = maxK. In particular, we do not have that⋃
n∈K

(]−n, n[× ]−n, n[) = R2.

Thus {]−n, n[× ]−n, n[}n∈K is not a finite subcovering of U .
This demonstrates that U does not admit a finite subcovering. Thereby it gives a

second proof that (R2,OR2) is not compact.

Example 14.4.4. Suppose that a and b belong to R. Let O]a,b[ be the subspace topology
on ]a, b[ with respect to O]a,b[. The set

U =
{]
a+ 1

n , b−
1
n

[}
n ∈ N and 1

n
< b−a

2
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is an open covering of ]a, b[ with respect to O]a,b[.

] [

] [

] [

] [

] [

] [

] [

] [

] [

] [

b−a
2

a b

Let K be a subset of
{
n ∈ N | 1n <

b−a
2

}
such that

{]
a+ 1

n , b−
1
n

[}
n∈K is finite. This is

the same as to say that K is a finite subset of
{
n ∈ N | 1n <

b−a
2

}
. Then⋃

n∈K

]
a+ 1

n , b−
1
n

[
=
]
a+ 1

m , b−
1
m

[
,

where m = maxK. In particular, we do not have that⋃
n∈K

]
a+ 1

n , b−
1
n

[
= ]a, b[ .

Thus
{]
a+ 1

n , b−
1
n

[}
n∈K is not a finite subcovering of U .

This demonstrates that U does not admit a finite subcovering. We conclude that(
]a, b[ ,O]a,b[

)
is not compact.

Example 14.4.5. Let us think of S1 × ]0, 1[ as a cylinder with the two circles at its
ends removed.

The set {
S1 ×

]
1
n , 1−

1
n

[}
n ∈ N and n > 2

is an open covering of S1 × ]0, 1[ with respect to OS1×]0,1[.
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14.4 Examples of topological spaces which are not compact

Let K be a subset of {n ∈ N | n > 2} such that
{
S1 ×

]
1
n , 1−

1
n

[}
n∈K is finite. This is

the same as to say that K is a finite subset of {n ∈ N | n > 2}. Then⋃
n∈K

(
S1 ×

]
1
n , 1−

1
n

[)
= S1 ×

]
1
m , 1−

1
m

[
,

where m = maxK. In particular, we do not have that⋃
n∈K

(
S1 ×

]
1
n , 1−

1
n

[)
= S1 × ]0, 1[ .

Thus
{
S1 ×

]
1
n , 1−

1
n

[}
n∈K is not a finite subcovering of U .

This demonstrates that U does not admit a finite subcovering. We conclude that(
S1 × ]0, 1[ ,OS1×]0,1[

)
is not compact.

Example 14.4.6. Let OD2\S1 be the subspace topology on D2 \ S1 with respect to
(D2,OD2).

Let Un be the subset of D2 \ S1 given by{
(x, y) ∈ R2 | ‖(x, y)‖ < 1− 1

n

}
.

The set U = {Un}n∈N is an open covering of D2 \ S1 with respect to OD2\S1 .

Let K be a subset of N such that {Un}n∈K is finite. This is the same as to say that K
is a finite subset of N. Then ⋃

n∈K
Un = Um,
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where m = maxK. In particular, we do not have that⋃
n∈K

Un = D2 \ S1.

Thus {Un}n∈K is not a finite subcovering of U .
This demonstrates that U does not admit a finite subcovering. We conclude that(
D2 \ S1,OD2\S1

)
is not compact.
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E14 Exercises for Lecture 14

E14.1 Exam questions

Task E14.1.1. Give a counterexample to the following assertion: the set{
(x, x) ∈ R2 | x ∈ X

}
is closed in R2 with respect to OR2 for every subset X of R. Give an example of a
topological property which can be imposed upon X to ensure that the assertion correct.
Justify your answer.

Task E14.1.2. Let O[0,1[ be the subspace topology on [0, 1[ with respect to (R,OR). Is(
[0, 1[ ,O[0,1[

)
compact?

0 1

[ [

Task E14.1.3. Find an open covering of I2 × R with respect to OI2×R which does not
admit a finite subcovering. Conclude that (I2 × R,OI2×R) is not compact.

Task E14.1.4. Let X be the ‘open annulus’ given by{
(x, y) ∈ R2 | 12 < ‖(x, y)‖ < 1

}
.

Let OX the subspace topology on X with respect to (R2,OR2). Give an example of
an open covering of (X,OX) which does not admit a finite subcovering. Deduce that
(X,OX) is not compact.
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Task E14.1.5. Let X be the union of [0, 1[ × [0, 3] and [0, 3] × [0, 1[. Let OX be the
subspace topology on X with respect to (R2,OR2).

Find an open covering of X which does not admit a finite subcovering. Conclude that
(X,OX) is not compact.

Task E14.1.6. Let X be the set given by I2 \
([

1
4 ,

3
4

]
×
[
1
4 ,

3
4

])
.

Let

I2 T 2
π

be the quotient map. Let Oπ(X) be the subspace topology on π(X) with respect to
(T 2,OT 2). Demonstrate that

(
π(X),Oπ(X)

)
is not compact.

Task E14.1.7. Prove that the Sorgenfrey line of Task E11.1.12 is not compact.

Task E14.1.8. Give an example of an equivalence relation∼ on R such that (R/∼,OR/∼)
is compact.

E14.2 In the lecture notes

Task E14.2.1. Let (X0,OX0) and (X1,OX1) be topological spaces. Let A be a subset of
X0×X1. Suppose that (x0, x1) belongs to X0×X1. Prove that the following assertions
are equivalent.

(1) There is a neighbourhood W of (x0, x1) in X×X with respect to OX×X such that
W ∩A is empty.

(2) There is a neighbourhood U0 of x0 in X with respect to OX , and a neighbourhood
U1 of x1 in X with respect to OX such that (U0 × U1) ∩A is empty.
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E14.3 For a deeper understanding

Task E14.2.2. Let X0 and X1 be sets. Let A be a subset of X0 × X1. Let U0 be a
subset of X0, and let U1 be a subset of X1. Prove that (U0 × U1) ∩A = U0 ∩ U1.

Task E14.2.3. Let X be a set, and let ∼ be an equivalence relation on X. Let

X X/∼π

be the quotient map. Let

X ×X (X/∼)× (X/∼)
π × π

be the map given by (x0, x1) 7→ (π(x0), π(x1)). Prove that R∼ = (π × π)−1 (∆ (X/∼)).

Task E14.2.4. Let X and ∼ be as in Example 13.4.1. Prove that ((0, 0), (0, 0)) is a
limit point of R∼ in X ×X with respect to OX .

E14.3 For a deeper understanding

Task E14.3.1. Let Σ be the set given by{
1
n | n ∈ N

}
.

Let OK be the set of subsets U with the property that, for every x which belongs to U ,
there are real numbers a and b such that one of the following holds.

(1) We have that x belongs to ]a, b[, and that ]a, b[ is a subset of U .

(2) We have that x belongs to ]a, b[\(]a, b[ ∩ Σ), and that ]a, b[\(]a, b[ ∩ Σ) is a subset
of U .

Prove that OK defines a topology on R.

Terminology E14.3.2. The topology OK is known as the K-topology on R.

Task E14.3.3. Prove that (R,OK) is Hausdorff. You may wish to proceed as follows.

(1) Observe that OR is a subset of OK .

(2) Appeal to Example 13.2.1 and to Task E13.3.1.

Task E14.3.4. Let ∼ be the equivalence relation on R generated by 1 ∼ 1
n for every n

which belongs to N. Prove that (R/∼,OR/∼) is not Hausdorff. You may wish to proceed
as follows.
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(1) Let

R R/∼π

be the quotient map. Let U0 be a neighbourhood of π(0) in R/∼ with respect to
OR/∼. Let U1 be a neighbourhood of π(1) in R/∼ with respect to OR/∼. By Remark
6.1.9, we have that π is continuous. Deduce that π−1(U0) and π−1(U1) belong to
OR.

(2) Since π(1) belongs to U1, observe that, by definition of ∼, the set Σ is a subset of
π−1(U1).

(3) Suppose that n belongs to N. Since 1
n belongs to π−1(U1), and since π−1(U1)

belongs to OK , observe that, by definition of OK and the fact that 1
n belongs to Σ,

there are real numbers an and bn such that an <
1
n < bn, and such that ]an, bn[ is a

subset of π−1(U1).

(4) Since π−1(U0) belongs to OK , we have, by definition of OK , that there are real
numbers a and b such that one of the following holds.

(I) We have that 0 belongs to ]a, b[, and that ]a, b[ is a subset of π−1(U0).

(II) We have that 0 belongs to ]a, b[ \ (]a, b[ ∩ Σ), and that ]a, b[ \ (]a, b[ ∩ Σ) is a
subset of π−1(U0).

In either case, let n be a natural number such that 1
n < b. Let x be a real number

which does not belong to Σ, and which has the property that an < x < 1
n and that

0 < x. Observe that x belongs to both π−1 (U0) and to π−1 (U1).

(5) Deduce from (4) that π(x) belongs to both U0 and U1. In other words, U0 ∩U1 is
not empty.

(6) Conclude that (R/∼,OR/∼) is not Hausdorff.

Task E14.3.5. Let ∼ be the equivalence relation on R of Task E14.3.4. Let OK2
be the

product topology on R2 with respect to two copies of (R,OK). Prove that R∼ is closed
in R2 with respect to OK2

. You may wish to proceed as follows.

(1) Suppose that x is a limit point of Σ in R with respect to OK . By Task E8.3.10,
deduce that x is a limit point of Σ in R with respect to OR.

(2) Demonstrate that the only limit point of Σ in R with respect to OR is 0.

(3) Suppose that a and b belong to R, and that a < 0 < b. Observe ]a, b[ \ Σ is a
neighbourhood of 0 in R with respect to OK . Since Σ∩ (]a, b[ \ Σ) is empty, deduce
that 0 is not a limit point of Σ in R with respect to OK .

(4) Deduce from (1)–(3) that Σ is closed in R with respect to OK .
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E14.3 For a deeper understanding

(5) By Task E3.3.1, deduce from (4) that Σ×Σ is closed in R2 with respect to OK2
.

(6) Observe that R∼ is Σ× Σ.

(7) Conclude that R∼ is closed in R2 with respect to OK2
.

Task E14.3.6. Let (X,OX) and (Y,OY ) be topological spaces. Suppose that either
(X,OX) or (Y,OY ) is not compact. Prove that (X × Y,OX×Y ) is not compact. You
may wish to glance back at Example 14.4.2 and Example 14.4.5.
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