Exam in MA1301 Number Theory
English
Friday December 7, 2012
Time: 09:00-13:00 (4 hours)
Grades due: January 4, 2013

Examination Aids
Code D (Simple calculator: HP30S, Citizen SR-270X eller Citizen SR-270X college)

Give reasons for all answers.

Problem 1 Find all solutions of the system

$$
\begin{aligned}
& 2 x \equiv 4 \\
& x(\bmod 6) \\
& x \equiv 1 \\
&(\bmod 7) \\
&(\bmod 11)
\end{aligned}
$$

Problem 2

If $n=a_{0}+a_{1} \cdot 10^{1}+a_{2} \cdot 10^{2}+\ldots+a_{k} \cdot 10^{k}$ for integers $0 \leq a_{i} \leq 9$ the integer $T(n)=a_{0}+a_{1}+\ldots+a_{k}$ is called the crossum of n. Show that $m=3$ and $m=9$ are the only integers $m>1$ such that $m \mid n$ if and only if $m \mid T(n)$.

Problem 3 How is Euler's ϕ-function defined? Find all n such that $\phi(n)=8$.

Problem 4

a) Find all solutions of the congruence $13 x \equiv 1(\bmod 60)$.
b) In a RSA-cryptosystem the secret decryptation key is $\{n, d\}=\{77,13\}$. What is then the public decryptation key $\{n, e\}$?
c) Decode the message $N=20$.

Problem 5

a) What is the definition of a primitive root modulo n ?
b) Find one primitive root of 17 and explain how this can be used to find all primitive roots modulo 17.
c) Let p and q be prime nunbers such that $p=2 q+1$. Show that 4 has order q modulo p.

Problem 6 Show that there are no integers m and n such that $m^{5}-m=n^{2}+2$. (Hint: solve the equation modulo 5.)

Problem 7 Has the congruence $x^{2} \equiv 311(\bmod 19)$ any solutions? Use this to determine whether the congruence $x^{2} \equiv 19(\bmod 311)$ has solutions.

